{"title":"DOCK9作为与食管鳞状细胞癌血管生成和免疫反应相关的预测性生物标志物","authors":"Yaqiang Pan, Yangyong Sun, Ying Xiao, Jifei Ding, Ge Hu, Zhiqiang Lin, Chang Chen","doi":"10.1007/s10238-025-01653-8","DOIUrl":null,"url":null,"abstract":"<p><p>Esophageal squamous cell carcinoma (ESCC) remains a serious health concern due to its high prevalence and mortality rates. Identifying prognostic biomarkers is essential to improving patient outcomes and treatment strategies. DOCK9, a gene implicated in various cellular functions, may play a significant role in ESCC progression and prognosis. We analyzed RNA microarray datasets and single-cell RNA sequencing data to identify survival-associated genes in ESCC. Using protein expression analysis, we examined DOCK9 in ESCC tissues and assessed its functional impact on human umbilical vein endothelial cells to understand its role in angiogenesis. Additionally, we developed a 21-gene prognostic risk model, focusing on the relevance of DOCK9. Our findings revealed that DOCK9 expression is significantly reduced in ESCC tissues and correlates with poor survival outcomes. Functionally, DOCK9 was found to regulate angiogenesis and modulate the tumor-associated fibroblast environment in ESCC. Furthermore, the DOCK9/CD31 ratio emerged as a potential marker to predict immune therapy response in ESCC. DOCK9 serves as a prognostic biomarker in ESCC, influencing both angiogenesis and immune response, and could guide future therapeutic strategies, particularly in immunotherapy. This study highlights DOCK9's relevance in ESCC prognosis, supporting its potential role in tailored therapies aimed at angiogenesis and immune modulation.</p>","PeriodicalId":10337,"journal":{"name":"Clinical and Experimental Medicine","volume":"25 1","pages":"126"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12021961/pdf/","citationCount":"0","resultStr":"{\"title\":\"DOCK9 as a predictive biomarker linked to angiogenesis and immune response in esophageal squamous cell carcinoma.\",\"authors\":\"Yaqiang Pan, Yangyong Sun, Ying Xiao, Jifei Ding, Ge Hu, Zhiqiang Lin, Chang Chen\",\"doi\":\"10.1007/s10238-025-01653-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Esophageal squamous cell carcinoma (ESCC) remains a serious health concern due to its high prevalence and mortality rates. Identifying prognostic biomarkers is essential to improving patient outcomes and treatment strategies. DOCK9, a gene implicated in various cellular functions, may play a significant role in ESCC progression and prognosis. We analyzed RNA microarray datasets and single-cell RNA sequencing data to identify survival-associated genes in ESCC. Using protein expression analysis, we examined DOCK9 in ESCC tissues and assessed its functional impact on human umbilical vein endothelial cells to understand its role in angiogenesis. Additionally, we developed a 21-gene prognostic risk model, focusing on the relevance of DOCK9. Our findings revealed that DOCK9 expression is significantly reduced in ESCC tissues and correlates with poor survival outcomes. Functionally, DOCK9 was found to regulate angiogenesis and modulate the tumor-associated fibroblast environment in ESCC. Furthermore, the DOCK9/CD31 ratio emerged as a potential marker to predict immune therapy response in ESCC. DOCK9 serves as a prognostic biomarker in ESCC, influencing both angiogenesis and immune response, and could guide future therapeutic strategies, particularly in immunotherapy. This study highlights DOCK9's relevance in ESCC prognosis, supporting its potential role in tailored therapies aimed at angiogenesis and immune modulation.</p>\",\"PeriodicalId\":10337,\"journal\":{\"name\":\"Clinical and Experimental Medicine\",\"volume\":\"25 1\",\"pages\":\"126\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12021961/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Experimental Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10238-025-01653-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10238-025-01653-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
DOCK9 as a predictive biomarker linked to angiogenesis and immune response in esophageal squamous cell carcinoma.
Esophageal squamous cell carcinoma (ESCC) remains a serious health concern due to its high prevalence and mortality rates. Identifying prognostic biomarkers is essential to improving patient outcomes and treatment strategies. DOCK9, a gene implicated in various cellular functions, may play a significant role in ESCC progression and prognosis. We analyzed RNA microarray datasets and single-cell RNA sequencing data to identify survival-associated genes in ESCC. Using protein expression analysis, we examined DOCK9 in ESCC tissues and assessed its functional impact on human umbilical vein endothelial cells to understand its role in angiogenesis. Additionally, we developed a 21-gene prognostic risk model, focusing on the relevance of DOCK9. Our findings revealed that DOCK9 expression is significantly reduced in ESCC tissues and correlates with poor survival outcomes. Functionally, DOCK9 was found to regulate angiogenesis and modulate the tumor-associated fibroblast environment in ESCC. Furthermore, the DOCK9/CD31 ratio emerged as a potential marker to predict immune therapy response in ESCC. DOCK9 serves as a prognostic biomarker in ESCC, influencing both angiogenesis and immune response, and could guide future therapeutic strategies, particularly in immunotherapy. This study highlights DOCK9's relevance in ESCC prognosis, supporting its potential role in tailored therapies aimed at angiogenesis and immune modulation.
期刊介绍:
Clinical and Experimental Medicine (CEM) is a multidisciplinary journal that aims to be a forum of scientific excellence and information exchange in relation to the basic and clinical features of the following fields: hematology, onco-hematology, oncology, virology, immunology, and rheumatology. The journal publishes reviews and editorials, experimental and preclinical studies, translational research, prospectively designed clinical trials, and epidemiological studies. Papers containing new clinical or experimental data that are likely to contribute to changes in clinical practice or the way in which a disease is thought about will be given priority due to their immediate importance. Case reports will be accepted on an exceptional basis only, and their submission is discouraged. The major criteria for publication are clarity, scientific soundness, and advances in knowledge. In compliance with the overwhelmingly prevailing request by the international scientific community, and with respect for eco-compatibility issues, CEM is now published exclusively online.