用LASSO回归和Boruta算法探讨中性粒细胞/白蛋白比与哮喘的关系:NHANES 2001 - 2018的结果。

IF 3.2 4区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Yumin Fu, Jijing Zhao, Yunpeng Wang
{"title":"用LASSO回归和Boruta算法探讨中性粒细胞/白蛋白比与哮喘的关系:NHANES 2001 - 2018的结果。","authors":"Yumin Fu, Jijing Zhao, Yunpeng Wang","doi":"10.1007/s10238-025-01701-3","DOIUrl":null,"url":null,"abstract":"<p><p>The present study aims to investigate the relationship between the neutrophil-percentage-to-albumin ratio (NPAR) and asthma using least absolute shrinkage and selection operator (LASSO) regression and Boruta algorithm. Based on the National Health and Nutrition Examination Survey database from 2001 to 2018, a total of 31,138 eligible participants were included in this study. The participants were randomly divided into a training cohort and a validation cohort in a 7:3 ratio. LASSO regression and Boruta algorithm were applied to the training cohort for assessment, selection of the optimal model, and identification of potential confounding factors. A nomogram prediction model, receiver operating characteristic curve, calibration curve, and decision curve analysis were constructed to evaluate the model's ability to predict the risk of asthma and its stability. These analyses aim to provide a reference for clinical diagnosis and treatment. The study demonstrated that after adjusting for potential confounding factors, the NPAR was positively correlated with asthma incidence (P < 0.01). The area under the curve for the training set was 0.66 for LASSO regression and 0.64 for Boruta algorithm, indicating that LASSO regression exhibited superior performance. Through LASSO regression, 10 variables were selected, including gender, race, smoking status, hypertension, diabetes, cancer, poverty-income ratio, BMI, cardiovascular disease, and age. A nomogram prediction model was constructed based on these predictors. The calibration curve showed good fit between the two groups. A higher NPAR is significantly positively correlated with an increased risk of asthma.</p>","PeriodicalId":10337,"journal":{"name":"Clinical and Experimental Medicine","volume":"25 1","pages":"149"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12065745/pdf/","citationCount":"0","resultStr":"{\"title\":\"LASSO regression and Boruta algorithm to explore the relationship between neutrophil percentage to albumin ratio and asthma: results from the NHANES 2001 to 2018.\",\"authors\":\"Yumin Fu, Jijing Zhao, Yunpeng Wang\",\"doi\":\"10.1007/s10238-025-01701-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present study aims to investigate the relationship between the neutrophil-percentage-to-albumin ratio (NPAR) and asthma using least absolute shrinkage and selection operator (LASSO) regression and Boruta algorithm. Based on the National Health and Nutrition Examination Survey database from 2001 to 2018, a total of 31,138 eligible participants were included in this study. The participants were randomly divided into a training cohort and a validation cohort in a 7:3 ratio. LASSO regression and Boruta algorithm were applied to the training cohort for assessment, selection of the optimal model, and identification of potential confounding factors. A nomogram prediction model, receiver operating characteristic curve, calibration curve, and decision curve analysis were constructed to evaluate the model's ability to predict the risk of asthma and its stability. These analyses aim to provide a reference for clinical diagnosis and treatment. The study demonstrated that after adjusting for potential confounding factors, the NPAR was positively correlated with asthma incidence (P < 0.01). The area under the curve for the training set was 0.66 for LASSO regression and 0.64 for Boruta algorithm, indicating that LASSO regression exhibited superior performance. Through LASSO regression, 10 variables were selected, including gender, race, smoking status, hypertension, diabetes, cancer, poverty-income ratio, BMI, cardiovascular disease, and age. A nomogram prediction model was constructed based on these predictors. The calibration curve showed good fit between the two groups. A higher NPAR is significantly positively correlated with an increased risk of asthma.</p>\",\"PeriodicalId\":10337,\"journal\":{\"name\":\"Clinical and Experimental Medicine\",\"volume\":\"25 1\",\"pages\":\"149\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12065745/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Experimental Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10238-025-01701-3\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10238-025-01701-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在利用最小绝对收缩和选择算子(LASSO)回归和Boruta算法研究中性粒细胞百分比与白蛋白比率(NPAR)与哮喘之间的关系。基于2001年至2018年全国健康与营养检查调查数据库,本研究共纳入31,138名符合条件的参与者。参与者按7:3的比例随机分为训练组和验证组。采用LASSO回归和Boruta算法对训练队列进行评估,选择最优模型,识别潜在混杂因素。构建nomogram预测模型、受试者工作特征曲线、校正曲线和决策曲线分析,评价模型预测哮喘风险的能力及其稳定性。旨在为临床诊断和治疗提供参考。研究表明,在调整潜在的混杂因素后,NPAR与哮喘发病率呈正相关(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LASSO regression and Boruta algorithm to explore the relationship between neutrophil percentage to albumin ratio and asthma: results from the NHANES 2001 to 2018.

The present study aims to investigate the relationship between the neutrophil-percentage-to-albumin ratio (NPAR) and asthma using least absolute shrinkage and selection operator (LASSO) regression and Boruta algorithm. Based on the National Health and Nutrition Examination Survey database from 2001 to 2018, a total of 31,138 eligible participants were included in this study. The participants were randomly divided into a training cohort and a validation cohort in a 7:3 ratio. LASSO regression and Boruta algorithm were applied to the training cohort for assessment, selection of the optimal model, and identification of potential confounding factors. A nomogram prediction model, receiver operating characteristic curve, calibration curve, and decision curve analysis were constructed to evaluate the model's ability to predict the risk of asthma and its stability. These analyses aim to provide a reference for clinical diagnosis and treatment. The study demonstrated that after adjusting for potential confounding factors, the NPAR was positively correlated with asthma incidence (P < 0.01). The area under the curve for the training set was 0.66 for LASSO regression and 0.64 for Boruta algorithm, indicating that LASSO regression exhibited superior performance. Through LASSO regression, 10 variables were selected, including gender, race, smoking status, hypertension, diabetes, cancer, poverty-income ratio, BMI, cardiovascular disease, and age. A nomogram prediction model was constructed based on these predictors. The calibration curve showed good fit between the two groups. A higher NPAR is significantly positively correlated with an increased risk of asthma.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clinical and Experimental Medicine
Clinical and Experimental Medicine 医学-医学:研究与实验
CiteScore
4.80
自引率
2.20%
发文量
159
审稿时长
2.5 months
期刊介绍: Clinical and Experimental Medicine (CEM) is a multidisciplinary journal that aims to be a forum of scientific excellence and information exchange in relation to the basic and clinical features of the following fields: hematology, onco-hematology, oncology, virology, immunology, and rheumatology. The journal publishes reviews and editorials, experimental and preclinical studies, translational research, prospectively designed clinical trials, and epidemiological studies. Papers containing new clinical or experimental data that are likely to contribute to changes in clinical practice or the way in which a disease is thought about will be given priority due to their immediate importance. Case reports will be accepted on an exceptional basis only, and their submission is discouraged. The major criteria for publication are clarity, scientific soundness, and advances in knowledge. In compliance with the overwhelmingly prevailing request by the international scientific community, and with respect for eco-compatibility issues, CEM is now published exclusively online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信