提高具有治愈率的病例队列研究的估计效率。

IF 1.4 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2025-04-02 DOI:10.1093/biomtc/ujaf059
Qingning Zhou, Xu Cao
{"title":"提高具有治愈率的病例队列研究的估计效率。","authors":"Qingning Zhou, Xu Cao","doi":"10.1093/biomtc/ujaf059","DOIUrl":null,"url":null,"abstract":"<p><p>In the studies of time-to-event outcomes, it often happens that a fraction of subjects will never experience the event of interest, and these subjects are said to be cured. The studies with a cure fraction often yield a low event rate. To reduce cost and enhance study power, 2-phase sampling designs are often adopted, especially when the covariates of interest are expensive to measure or obtain. In this paper, we consider the generalized case-cohort design for studies with a cure fraction. Under this design, the expensive covariates are measured for a subset of the study cohort, called subcohort, and for all or a subset of the remaining subjects outside the subcohort who have experienced the event during the study, called cases. We propose a 2-step estimation procedure under a class of semiparametric transformation mixture cure models. We first develop a sieve maximum weighted likelihood method based only on the complete data and also devise an Expectation-Maximization (EM) algorithm for implementation. We then update the resulting estimator via a working model between the outcome and cheap covariates or auxiliary variables using the full data. We show that the proposed update estimator is consistent and asymptotically at least as efficient as the complete-data estimator, regardless of whether the working model is correctly specified or not. We also propose a weighted bootstrap procedure for variance estimation. Extensive simulation studies demonstrate the superior performance of the proposed method in finite-sample. An application to the National Wilms' Tumor Study is provided for illustration.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 2","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving estimation efficiency for case-cohort studies with a cure fraction.\",\"authors\":\"Qingning Zhou, Xu Cao\",\"doi\":\"10.1093/biomtc/ujaf059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the studies of time-to-event outcomes, it often happens that a fraction of subjects will never experience the event of interest, and these subjects are said to be cured. The studies with a cure fraction often yield a low event rate. To reduce cost and enhance study power, 2-phase sampling designs are often adopted, especially when the covariates of interest are expensive to measure or obtain. In this paper, we consider the generalized case-cohort design for studies with a cure fraction. Under this design, the expensive covariates are measured for a subset of the study cohort, called subcohort, and for all or a subset of the remaining subjects outside the subcohort who have experienced the event during the study, called cases. We propose a 2-step estimation procedure under a class of semiparametric transformation mixture cure models. We first develop a sieve maximum weighted likelihood method based only on the complete data and also devise an Expectation-Maximization (EM) algorithm for implementation. We then update the resulting estimator via a working model between the outcome and cheap covariates or auxiliary variables using the full data. We show that the proposed update estimator is consistent and asymptotically at least as efficient as the complete-data estimator, regardless of whether the working model is correctly specified or not. We also propose a weighted bootstrap procedure for variance estimation. Extensive simulation studies demonstrate the superior performance of the proposed method in finite-sample. An application to the National Wilms' Tumor Study is provided for illustration.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"81 2\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujaf059\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf059","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在对时间与事件结果的研究中,经常会有一小部分受试者永远不会经历感兴趣的事件,而这些受试者被认为是治愈的。使用治愈分数的研究通常产生较低的事件发生率。为了降低成本和提高研究能力,通常采用两相采样设计,特别是当感兴趣的协变量测量或获取成本很高时。在本文中,我们考虑了具有治愈率的研究的广义病例队列设计。在这种设计下,对研究队列的一个子集(称为亚队列)和在研究期间经历过该事件的子队列之外的所有或部分剩余受试者(称为病例)测量昂贵的协变量。提出了一类半参数变换混合模型下的两步估计方法。我们首先开发了一种仅基于完整数据的筛最大加权似然方法,并设计了一种期望最大化(EM)算法来实现。然后,我们通过使用完整数据的结果和廉价协变量或辅助变量之间的工作模型更新结果估计器。我们证明,无论工作模型是否正确指定,所提出的更新估计量是一致的,并且渐近地至少与完整数据估计量一样有效。我们还提出了一种加权自举法进行方差估计。大量的仿真研究证明了该方法在有限样本情况下的优越性能。为说明这一点,本文提供了国家威尔姆斯肿瘤研究的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving estimation efficiency for case-cohort studies with a cure fraction.

In the studies of time-to-event outcomes, it often happens that a fraction of subjects will never experience the event of interest, and these subjects are said to be cured. The studies with a cure fraction often yield a low event rate. To reduce cost and enhance study power, 2-phase sampling designs are often adopted, especially when the covariates of interest are expensive to measure or obtain. In this paper, we consider the generalized case-cohort design for studies with a cure fraction. Under this design, the expensive covariates are measured for a subset of the study cohort, called subcohort, and for all or a subset of the remaining subjects outside the subcohort who have experienced the event during the study, called cases. We propose a 2-step estimation procedure under a class of semiparametric transformation mixture cure models. We first develop a sieve maximum weighted likelihood method based only on the complete data and also devise an Expectation-Maximization (EM) algorithm for implementation. We then update the resulting estimator via a working model between the outcome and cheap covariates or auxiliary variables using the full data. We show that the proposed update estimator is consistent and asymptotically at least as efficient as the complete-data estimator, regardless of whether the working model is correctly specified or not. We also propose a weighted bootstrap procedure for variance estimation. Extensive simulation studies demonstrate the superior performance of the proposed method in finite-sample. An application to the National Wilms' Tumor Study is provided for illustration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信