Atif Adnan, Sundus Mona, Allah Rakha, Shahid Nazir, Hongbo Wang, Fu Ren
{"title":"巴基斯坦拉合尔尸体中三种法医相关双翅目动物的分子多样性。","authors":"Atif Adnan, Sundus Mona, Allah Rakha, Shahid Nazir, Hongbo Wang, Fu Ren","doi":"10.3390/insects16040381","DOIUrl":null,"url":null,"abstract":"<p><p>Molecular diversity, which reflects variation in species abundance and genetic structure, plays a pivotal role in forensic entomology by enabling the accurate identification of insect evidence through tools such as DNA barcoding. In Pakistan, the absence of trained forensic entomologists and limited research on insect biodiversity hinder the effective use of entomological evidence in criminal investigations. Traditional morphological identification methods are insufficient for resolving complex forensic cases, particularly when dealing with immature insect stages. This highlights the urgent need for molecular approaches, such as DNA barcoding, to enhance species identification and genetic analysis of forensically relevant insects. This study uniquely focuses on evaluating the utility of a 658 bp fragment of the mitochondrial cytochrome oxidase subunit 1 (CO1) gene for identifying dipteran species collected from cadavers in Lahore, Pakistan. The primary goal was to identify forensically relevant insect species, assess their genetic diversity and population structure, and compare these findings with global data to contextualize the results within forensic entomology. Three blow fly species were identified: <i>Chrysomya megacephala</i> (Fabricius, 1794), <i>Chrysomya saffranea</i> (Bigot, 1877), and <i>Chrysomya rufifacies</i> (Macquart, 1843). Low genetic diversity was observed within populations, while significant genetic differentiation among populations was indicated by a high fixation index (FST = 0.83992). These findings suggest unique genetic signatures for blow fly populations in Lahore. This study underscores the importance of molecular tools like DNA barcoding for species identification and highlights the need for further research to establish a comprehensive database of forensically relevant insects in Pakistan, given the limited species diversity and unique genetic profiles observed. By laying the groundwork for future research, this study contributes to advancing forensic entomology in Pakistan by improving species identification, which, when combined with future thermobiological data, can enhance postmortem interval (PMI) estimation and forensic investigations.</p>","PeriodicalId":13642,"journal":{"name":"Insects","volume":"16 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12027971/pdf/","citationCount":"0","resultStr":"{\"title\":\"Molecular Diversity of Three Forensically Relevant Dipterans from Cadavers in Lahore, Pakistan.\",\"authors\":\"Atif Adnan, Sundus Mona, Allah Rakha, Shahid Nazir, Hongbo Wang, Fu Ren\",\"doi\":\"10.3390/insects16040381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Molecular diversity, which reflects variation in species abundance and genetic structure, plays a pivotal role in forensic entomology by enabling the accurate identification of insect evidence through tools such as DNA barcoding. In Pakistan, the absence of trained forensic entomologists and limited research on insect biodiversity hinder the effective use of entomological evidence in criminal investigations. Traditional morphological identification methods are insufficient for resolving complex forensic cases, particularly when dealing with immature insect stages. This highlights the urgent need for molecular approaches, such as DNA barcoding, to enhance species identification and genetic analysis of forensically relevant insects. This study uniquely focuses on evaluating the utility of a 658 bp fragment of the mitochondrial cytochrome oxidase subunit 1 (CO1) gene for identifying dipteran species collected from cadavers in Lahore, Pakistan. The primary goal was to identify forensically relevant insect species, assess their genetic diversity and population structure, and compare these findings with global data to contextualize the results within forensic entomology. Three blow fly species were identified: <i>Chrysomya megacephala</i> (Fabricius, 1794), <i>Chrysomya saffranea</i> (Bigot, 1877), and <i>Chrysomya rufifacies</i> (Macquart, 1843). Low genetic diversity was observed within populations, while significant genetic differentiation among populations was indicated by a high fixation index (FST = 0.83992). These findings suggest unique genetic signatures for blow fly populations in Lahore. This study underscores the importance of molecular tools like DNA barcoding for species identification and highlights the need for further research to establish a comprehensive database of forensically relevant insects in Pakistan, given the limited species diversity and unique genetic profiles observed. By laying the groundwork for future research, this study contributes to advancing forensic entomology in Pakistan by improving species identification, which, when combined with future thermobiological data, can enhance postmortem interval (PMI) estimation and forensic investigations.</p>\",\"PeriodicalId\":13642,\"journal\":{\"name\":\"Insects\",\"volume\":\"16 4\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12027971/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insects\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/insects16040381\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insects","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/insects16040381","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Molecular Diversity of Three Forensically Relevant Dipterans from Cadavers in Lahore, Pakistan.
Molecular diversity, which reflects variation in species abundance and genetic structure, plays a pivotal role in forensic entomology by enabling the accurate identification of insect evidence through tools such as DNA barcoding. In Pakistan, the absence of trained forensic entomologists and limited research on insect biodiversity hinder the effective use of entomological evidence in criminal investigations. Traditional morphological identification methods are insufficient for resolving complex forensic cases, particularly when dealing with immature insect stages. This highlights the urgent need for molecular approaches, such as DNA barcoding, to enhance species identification and genetic analysis of forensically relevant insects. This study uniquely focuses on evaluating the utility of a 658 bp fragment of the mitochondrial cytochrome oxidase subunit 1 (CO1) gene for identifying dipteran species collected from cadavers in Lahore, Pakistan. The primary goal was to identify forensically relevant insect species, assess their genetic diversity and population structure, and compare these findings with global data to contextualize the results within forensic entomology. Three blow fly species were identified: Chrysomya megacephala (Fabricius, 1794), Chrysomya saffranea (Bigot, 1877), and Chrysomya rufifacies (Macquart, 1843). Low genetic diversity was observed within populations, while significant genetic differentiation among populations was indicated by a high fixation index (FST = 0.83992). These findings suggest unique genetic signatures for blow fly populations in Lahore. This study underscores the importance of molecular tools like DNA barcoding for species identification and highlights the need for further research to establish a comprehensive database of forensically relevant insects in Pakistan, given the limited species diversity and unique genetic profiles observed. By laying the groundwork for future research, this study contributes to advancing forensic entomology in Pakistan by improving species identification, which, when combined with future thermobiological data, can enhance postmortem interval (PMI) estimation and forensic investigations.
InsectsAgricultural and Biological Sciences-Insect Science
CiteScore
5.10
自引率
10.00%
发文量
1013
审稿时长
21.77 days
期刊介绍:
Insects (ISSN 2075-4450) is an international, peer-reviewed open access journal of entomology published by MDPI online quarterly. It publishes reviews, research papers and communications related to the biology, physiology and the behavior of insects and arthropods. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.