Adam Mohmand-Borkowski, Dareus O Conover, Tomasz Rozmyslowicz
{"title":"成纤维细胞激活蛋白与小鼠动脉粥样硬化模型中平滑肌细胞活化、细胞外基质转换和炎症等标志物的比较","authors":"Adam Mohmand-Borkowski, Dareus O Conover, Tomasz Rozmyslowicz","doi":"10.3390/metabo15040243","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Fibroblast activation protein (FAP) is a cell surface glycoprotein expressed by myofibroblastic cells in areas of active tissue remodeling, such as wound healing, fibrosis, and certain chronic inflammatory lesions. As FAP is uniquely present in chronic inflammatory lesions and has an important role in extracellular matrix (ECM) turnover, it appears to have all the characteristics necessary for involvement in atherosclerosis and atherosclerotic plaque rupture and has become a potential target in the treatment of myocardial infarction. <b>Methods:</b> To further understand the role of FAP, its expression in atherosclerotic plaques was examined in a genetically modified mouse model of accelerated atherosclerosis (<i>Apobec1</i> -/- <i>Ldlr</i> -/- double-knockout mice). The immunohistochemical Fap staining of atherosclerotic plaques in a mouse model of atherosclerosis was correlated with quantification of <i>Fap</i> mRNA obtained from the atherosclerotic plaques of the aortic arch. Fap distribution was characterized in mouse atherosclerotic plaques relative to other markers of activated smooth muscle cells, such as alpha smooth muscle actin and myosin heavy chain (Acta2 and Myh2), ECM turnover (Ki-67, procollagen III and Mmp-9), and inflammation in atherosclerosis (Cd-44, Il-12 and Tgf beta) using immunohistochemistry (IH) and RT-PCR analysis. <b>Results:</b> The mouse model of accelerated atherosclerosis showed an increasing presence of Fap with the progression of atherosclerosis and a high expression level in advanced atherosclerotic lesions compared with other markers of ECM turnover and inflammation in atherosclerosis. <b>Conclusions:</b> FAP exhibits a distinct pattern of expression in a mouse model of atherosclerosis as compared to other markers of activated vascular smooth muscle cells, ECM degeneration, and inflammatory cytokines.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12029363/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fibroblast Activation Protein Compared with Other Markers of Activated Smooth Muscle Cells, Extracellular Matrix Turnover and Inflammation in a Mouse Model of Atherosclerosis.\",\"authors\":\"Adam Mohmand-Borkowski, Dareus O Conover, Tomasz Rozmyslowicz\",\"doi\":\"10.3390/metabo15040243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> Fibroblast activation protein (FAP) is a cell surface glycoprotein expressed by myofibroblastic cells in areas of active tissue remodeling, such as wound healing, fibrosis, and certain chronic inflammatory lesions. As FAP is uniquely present in chronic inflammatory lesions and has an important role in extracellular matrix (ECM) turnover, it appears to have all the characteristics necessary for involvement in atherosclerosis and atherosclerotic plaque rupture and has become a potential target in the treatment of myocardial infarction. <b>Methods:</b> To further understand the role of FAP, its expression in atherosclerotic plaques was examined in a genetically modified mouse model of accelerated atherosclerosis (<i>Apobec1</i> -/- <i>Ldlr</i> -/- double-knockout mice). The immunohistochemical Fap staining of atherosclerotic plaques in a mouse model of atherosclerosis was correlated with quantification of <i>Fap</i> mRNA obtained from the atherosclerotic plaques of the aortic arch. Fap distribution was characterized in mouse atherosclerotic plaques relative to other markers of activated smooth muscle cells, such as alpha smooth muscle actin and myosin heavy chain (Acta2 and Myh2), ECM turnover (Ki-67, procollagen III and Mmp-9), and inflammation in atherosclerosis (Cd-44, Il-12 and Tgf beta) using immunohistochemistry (IH) and RT-PCR analysis. <b>Results:</b> The mouse model of accelerated atherosclerosis showed an increasing presence of Fap with the progression of atherosclerosis and a high expression level in advanced atherosclerotic lesions compared with other markers of ECM turnover and inflammation in atherosclerosis. <b>Conclusions:</b> FAP exhibits a distinct pattern of expression in a mouse model of atherosclerosis as compared to other markers of activated vascular smooth muscle cells, ECM degeneration, and inflammatory cytokines.</p>\",\"PeriodicalId\":18496,\"journal\":{\"name\":\"Metabolites\",\"volume\":\"15 4\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12029363/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolites\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/metabo15040243\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15040243","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Fibroblast Activation Protein Compared with Other Markers of Activated Smooth Muscle Cells, Extracellular Matrix Turnover and Inflammation in a Mouse Model of Atherosclerosis.
Background: Fibroblast activation protein (FAP) is a cell surface glycoprotein expressed by myofibroblastic cells in areas of active tissue remodeling, such as wound healing, fibrosis, and certain chronic inflammatory lesions. As FAP is uniquely present in chronic inflammatory lesions and has an important role in extracellular matrix (ECM) turnover, it appears to have all the characteristics necessary for involvement in atherosclerosis and atherosclerotic plaque rupture and has become a potential target in the treatment of myocardial infarction. Methods: To further understand the role of FAP, its expression in atherosclerotic plaques was examined in a genetically modified mouse model of accelerated atherosclerosis (Apobec1 -/- Ldlr -/- double-knockout mice). The immunohistochemical Fap staining of atherosclerotic plaques in a mouse model of atherosclerosis was correlated with quantification of Fap mRNA obtained from the atherosclerotic plaques of the aortic arch. Fap distribution was characterized in mouse atherosclerotic plaques relative to other markers of activated smooth muscle cells, such as alpha smooth muscle actin and myosin heavy chain (Acta2 and Myh2), ECM turnover (Ki-67, procollagen III and Mmp-9), and inflammation in atherosclerosis (Cd-44, Il-12 and Tgf beta) using immunohistochemistry (IH) and RT-PCR analysis. Results: The mouse model of accelerated atherosclerosis showed an increasing presence of Fap with the progression of atherosclerosis and a high expression level in advanced atherosclerotic lesions compared with other markers of ECM turnover and inflammation in atherosclerosis. Conclusions: FAP exhibits a distinct pattern of expression in a mouse model of atherosclerosis as compared to other markers of activated vascular smooth muscle cells, ECM degeneration, and inflammatory cytokines.
MetabolitesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍:
Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.