Siyun Cheng, Xiaojie Chu, Zhongyu Wang, Adeel Khan, Yue Tao, Han Shen, Ping Yang
{"title":"通过综合微生物组和代谢组分析揭示系统性红斑狼疮和狼疮性肾炎的潜在生物标志物和代谢途径。","authors":"Siyun Cheng, Xiaojie Chu, Zhongyu Wang, Adeel Khan, Yue Tao, Han Shen, Ping Yang","doi":"10.1186/s12866-025-03995-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aims to explore the relationship between gut microbiota and fecal metabolomic profiles in patients with systemic lupus erythematosus (SLE), with and without lupus nephritis (LN), in order to identify potentially relevant biomarkers and better understand their association with disease progression.</p><p><strong>Methods: </strong>Fecal samples from 15 healthy controls (HC) and 36 SLE patients (18 SLE-nonLN and 18 SLE-LN) were analyzed using 16S rRNA gene sequencing and untargeted metabolomics. Differential microbial taxa and metabolites were identified using Linear Discriminant Analysis Effect Size (LEfSe) and Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Receiver Operating Characteristic (ROC) curve analyses were used to assess the potential clinical relevance of selected metabolites.</p><p><strong>Results: </strong>Beta diversity analysis demonstrated distinct microbial clustering between groups (p < 0.05). SLE-LN samples showed an increased relative abundance of Proteobacteria and decreased Firmicutes compared to SLE-nonLN. Metabolomic profiling identified multiple differentially abundant metabolites, with notable enrichment in primary bile acid biosynthesis pathways (e.g., Glycocholic acid, AUC = 0.951). In the SLE-nonLN group, increased Glycoursodeoxycholic acid levels (AUC = 0.922) were observed in pathways related to taurine and hypotaurine metabolism. Correlation analysis indicated a negative association between Escherichia-Shigella and bile acid levels (p < 0.01).</p><p><strong>Conclusion: </strong>This integrative analysis suggests that patients with SLE and LN harbor distinct gut microbiota and metabolomic profiles. The identified microbial taxa and metabolites may have potential as non-invasive biomarkers and could contribute to a better understanding of SLE pathogenesis and progression.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"25 1","pages":"275"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12057120/pdf/","citationCount":"0","resultStr":"{\"title\":\"Uncovering potential biomarkers and metabolic pathways in systemic lupus erythematosus and lupus nephritis through integrated microbiome and metabolome analysis.\",\"authors\":\"Siyun Cheng, Xiaojie Chu, Zhongyu Wang, Adeel Khan, Yue Tao, Han Shen, Ping Yang\",\"doi\":\"10.1186/s12866-025-03995-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This study aims to explore the relationship between gut microbiota and fecal metabolomic profiles in patients with systemic lupus erythematosus (SLE), with and without lupus nephritis (LN), in order to identify potentially relevant biomarkers and better understand their association with disease progression.</p><p><strong>Methods: </strong>Fecal samples from 15 healthy controls (HC) and 36 SLE patients (18 SLE-nonLN and 18 SLE-LN) were analyzed using 16S rRNA gene sequencing and untargeted metabolomics. Differential microbial taxa and metabolites were identified using Linear Discriminant Analysis Effect Size (LEfSe) and Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Receiver Operating Characteristic (ROC) curve analyses were used to assess the potential clinical relevance of selected metabolites.</p><p><strong>Results: </strong>Beta diversity analysis demonstrated distinct microbial clustering between groups (p < 0.05). SLE-LN samples showed an increased relative abundance of Proteobacteria and decreased Firmicutes compared to SLE-nonLN. Metabolomic profiling identified multiple differentially abundant metabolites, with notable enrichment in primary bile acid biosynthesis pathways (e.g., Glycocholic acid, AUC = 0.951). In the SLE-nonLN group, increased Glycoursodeoxycholic acid levels (AUC = 0.922) were observed in pathways related to taurine and hypotaurine metabolism. Correlation analysis indicated a negative association between Escherichia-Shigella and bile acid levels (p < 0.01).</p><p><strong>Conclusion: </strong>This integrative analysis suggests that patients with SLE and LN harbor distinct gut microbiota and metabolomic profiles. The identified microbial taxa and metabolites may have potential as non-invasive biomarkers and could contribute to a better understanding of SLE pathogenesis and progression.</p>\",\"PeriodicalId\":9233,\"journal\":{\"name\":\"BMC Microbiology\",\"volume\":\"25 1\",\"pages\":\"275\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12057120/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12866-025-03995-5\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12866-025-03995-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Uncovering potential biomarkers and metabolic pathways in systemic lupus erythematosus and lupus nephritis through integrated microbiome and metabolome analysis.
Objective: This study aims to explore the relationship between gut microbiota and fecal metabolomic profiles in patients with systemic lupus erythematosus (SLE), with and without lupus nephritis (LN), in order to identify potentially relevant biomarkers and better understand their association with disease progression.
Methods: Fecal samples from 15 healthy controls (HC) and 36 SLE patients (18 SLE-nonLN and 18 SLE-LN) were analyzed using 16S rRNA gene sequencing and untargeted metabolomics. Differential microbial taxa and metabolites were identified using Linear Discriminant Analysis Effect Size (LEfSe) and Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Receiver Operating Characteristic (ROC) curve analyses were used to assess the potential clinical relevance of selected metabolites.
Results: Beta diversity analysis demonstrated distinct microbial clustering between groups (p < 0.05). SLE-LN samples showed an increased relative abundance of Proteobacteria and decreased Firmicutes compared to SLE-nonLN. Metabolomic profiling identified multiple differentially abundant metabolites, with notable enrichment in primary bile acid biosynthesis pathways (e.g., Glycocholic acid, AUC = 0.951). In the SLE-nonLN group, increased Glycoursodeoxycholic acid levels (AUC = 0.922) were observed in pathways related to taurine and hypotaurine metabolism. Correlation analysis indicated a negative association between Escherichia-Shigella and bile acid levels (p < 0.01).
Conclusion: This integrative analysis suggests that patients with SLE and LN harbor distinct gut microbiota and metabolomic profiles. The identified microbial taxa and metabolites may have potential as non-invasive biomarkers and could contribute to a better understanding of SLE pathogenesis and progression.
期刊介绍:
BMC Microbiology is an open access, peer-reviewed journal that considers articles on analytical and functional studies of prokaryotic and eukaryotic microorganisms, viruses and small parasites, as well as host and therapeutic responses to them and their interaction with the environment.