{"title":"废水中耐药细菌去除的当前方法综述:我们是否可以走向纳米磁铁-卟啉复合物用于抗菌光动力失活(aPDI) ?","authors":"Mbalenhle Kabelo Nhlabathi-Chidi, Neo Mokgadi Mametja, Thabo Thokozani Innocent Nkambule, Usisipho Feleni, Tracy Masebe, Muthumuni Managa","doi":"10.1007/s00284-025-04222-0","DOIUrl":null,"url":null,"abstract":"<p><p>The rise in the occurrence of drug-resistant bacteria within wastewater treatment plants (WWTPs) and their dissemination into the ecosystem from the same WWTPs has created a prevalent crisis affecting the integrity of human life and water sources worldwide. Antimicrobial Photodynamic Inactivation (aPDI) can be explored in an effort to address this crisis and preserve natures integrity as it can incorporate environmentally sustainable and cost-effective disinfection strategies within wastewater treatment plants. aPDI is a technique introduced as a strategic approach to inactivate harmful Drug-Resistant Bacteria (DRB) that are ineffectively removed with current wastewater treatment strategies. The incorporation of Nanomagnet-Porphyrin Hybrid (NMPH) based aPDI illustrates notable microbial inactivation and innovatively introduces prospects of achieving affordable and ecologically beneficial disinfection within wastewaters since they can be recycled and reused. Furthermore the added advantage of NMPHs based aPDI lies in the generation of a high quantum yield of cytotoxic <sup>1</sup>O<sub>2</sub> due to a strong visible absorption ascribed to π-π* electronic transitions within the porphyrins. These properties are largely ascribed to the high coefficient of light absorption in a broad wavelength range allowing them to generate reactive oxygen species through a spin-forbidden intersystem crossing mechanism allowing them to demonstrate express disinfection of harmful pathogens. This review addresses the high inactivation profiles of NMPH based aPDI, its low operating costs and reusability as the potential of establishing NMPH based aPDI in nanotechnology wastewater remediation and microbial disinfection applications. The authors believe that this systematic review can stimulate new researchers and assist in the future development of this important field of research, especially when it comes to the aquatic environment and natural water resources and given the adequate attention this method can aid globally but more so within emerging economies to ensure potable water is delivered to all people.</p>","PeriodicalId":11360,"journal":{"name":"Current Microbiology","volume":"82 6","pages":"249"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12008068/pdf/","citationCount":"0","resultStr":"{\"title\":\"An Overview of the Current Approaches in Drug-Resistant Bacterial Removal Within Wastewaters: Can We Move Towards Nanomagnet-Porphyrin Hybrids for Antimicrobial Photodynamic Inactivation (aPDI).\",\"authors\":\"Mbalenhle Kabelo Nhlabathi-Chidi, Neo Mokgadi Mametja, Thabo Thokozani Innocent Nkambule, Usisipho Feleni, Tracy Masebe, Muthumuni Managa\",\"doi\":\"10.1007/s00284-025-04222-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rise in the occurrence of drug-resistant bacteria within wastewater treatment plants (WWTPs) and their dissemination into the ecosystem from the same WWTPs has created a prevalent crisis affecting the integrity of human life and water sources worldwide. Antimicrobial Photodynamic Inactivation (aPDI) can be explored in an effort to address this crisis and preserve natures integrity as it can incorporate environmentally sustainable and cost-effective disinfection strategies within wastewater treatment plants. aPDI is a technique introduced as a strategic approach to inactivate harmful Drug-Resistant Bacteria (DRB) that are ineffectively removed with current wastewater treatment strategies. The incorporation of Nanomagnet-Porphyrin Hybrid (NMPH) based aPDI illustrates notable microbial inactivation and innovatively introduces prospects of achieving affordable and ecologically beneficial disinfection within wastewaters since they can be recycled and reused. Furthermore the added advantage of NMPHs based aPDI lies in the generation of a high quantum yield of cytotoxic <sup>1</sup>O<sub>2</sub> due to a strong visible absorption ascribed to π-π* electronic transitions within the porphyrins. These properties are largely ascribed to the high coefficient of light absorption in a broad wavelength range allowing them to generate reactive oxygen species through a spin-forbidden intersystem crossing mechanism allowing them to demonstrate express disinfection of harmful pathogens. This review addresses the high inactivation profiles of NMPH based aPDI, its low operating costs and reusability as the potential of establishing NMPH based aPDI in nanotechnology wastewater remediation and microbial disinfection applications. The authors believe that this systematic review can stimulate new researchers and assist in the future development of this important field of research, especially when it comes to the aquatic environment and natural water resources and given the adequate attention this method can aid globally but more so within emerging economies to ensure potable water is delivered to all people.</p>\",\"PeriodicalId\":11360,\"journal\":{\"name\":\"Current Microbiology\",\"volume\":\"82 6\",\"pages\":\"249\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12008068/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00284-025-04222-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00284-025-04222-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
An Overview of the Current Approaches in Drug-Resistant Bacterial Removal Within Wastewaters: Can We Move Towards Nanomagnet-Porphyrin Hybrids for Antimicrobial Photodynamic Inactivation (aPDI).
The rise in the occurrence of drug-resistant bacteria within wastewater treatment plants (WWTPs) and their dissemination into the ecosystem from the same WWTPs has created a prevalent crisis affecting the integrity of human life and water sources worldwide. Antimicrobial Photodynamic Inactivation (aPDI) can be explored in an effort to address this crisis and preserve natures integrity as it can incorporate environmentally sustainable and cost-effective disinfection strategies within wastewater treatment plants. aPDI is a technique introduced as a strategic approach to inactivate harmful Drug-Resistant Bacteria (DRB) that are ineffectively removed with current wastewater treatment strategies. The incorporation of Nanomagnet-Porphyrin Hybrid (NMPH) based aPDI illustrates notable microbial inactivation and innovatively introduces prospects of achieving affordable and ecologically beneficial disinfection within wastewaters since they can be recycled and reused. Furthermore the added advantage of NMPHs based aPDI lies in the generation of a high quantum yield of cytotoxic 1O2 due to a strong visible absorption ascribed to π-π* electronic transitions within the porphyrins. These properties are largely ascribed to the high coefficient of light absorption in a broad wavelength range allowing them to generate reactive oxygen species through a spin-forbidden intersystem crossing mechanism allowing them to demonstrate express disinfection of harmful pathogens. This review addresses the high inactivation profiles of NMPH based aPDI, its low operating costs and reusability as the potential of establishing NMPH based aPDI in nanotechnology wastewater remediation and microbial disinfection applications. The authors believe that this systematic review can stimulate new researchers and assist in the future development of this important field of research, especially when it comes to the aquatic environment and natural water resources and given the adequate attention this method can aid globally but more so within emerging economies to ensure potable water is delivered to all people.
期刊介绍:
Current Microbiology is a well-established journal that publishes articles in all aspects of microbial cells and the interactions between the microorganisms, their hosts and the environment.
Current Microbiology publishes original research articles, short communications, reviews and letters to the editor, spanning the following areas:
physiology, biochemistry, genetics, genomics, biotechnology, ecology, evolution, morphology, taxonomy, diagnostic methods, medical and clinical microbiology and immunology as applied to microorganisms.