{"title":"用于医学x射线、MRI和超声图像分类任务的深度学习方法:范围审查。","authors":"Hafsa Laçi, Kozeta Sevrani, Sarfraz Iqbal","doi":"10.1186/s12880-025-01701-5","DOIUrl":null,"url":null,"abstract":"<p><p>Medical images occupy the largest part of the existing medical information and dealing with them is challenging not only in terms of management but also in terms of interpretation and analysis. Hence, analyzing, understanding, and classifying them, becomes a very expensive and time-consuming task, especially if performed manually. Deep learning is considered a good solution for image classification, segmentation, and transfer learning tasks since it offers a large number of algorithms to solve such complex problems. PRISMA-ScR guidelines have been followed to conduct the scoping review with the aim of exploring how deep learning is being used to classify a broad spectrum of diseases diagnosed using an X-ray, MRI, or Ultrasound image modality.Findings contribute to the existing research by outlining the characteristics of the adopted datasets and the preprocessing or augmentation techniques applied to them. The authors summarized all relevant studies based on the deep learning models used and the accuracy achieved for classification. Whenever possible, they included details about the hardware and software configurations, as well as the architectural components of the models employed. Moreover, the models that achieved the highest accuracy in disease classification were highlighted, along with their strengths. The authors also discussed the limitations of the current approaches and proposed future directions for medical image classification.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"25 1","pages":"156"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12057223/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning approaches for classification tasks in medical X-ray, MRI, and ultrasound images: a scoping review.\",\"authors\":\"Hafsa Laçi, Kozeta Sevrani, Sarfraz Iqbal\",\"doi\":\"10.1186/s12880-025-01701-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Medical images occupy the largest part of the existing medical information and dealing with them is challenging not only in terms of management but also in terms of interpretation and analysis. Hence, analyzing, understanding, and classifying them, becomes a very expensive and time-consuming task, especially if performed manually. Deep learning is considered a good solution for image classification, segmentation, and transfer learning tasks since it offers a large number of algorithms to solve such complex problems. PRISMA-ScR guidelines have been followed to conduct the scoping review with the aim of exploring how deep learning is being used to classify a broad spectrum of diseases diagnosed using an X-ray, MRI, or Ultrasound image modality.Findings contribute to the existing research by outlining the characteristics of the adopted datasets and the preprocessing or augmentation techniques applied to them. The authors summarized all relevant studies based on the deep learning models used and the accuracy achieved for classification. Whenever possible, they included details about the hardware and software configurations, as well as the architectural components of the models employed. Moreover, the models that achieved the highest accuracy in disease classification were highlighted, along with their strengths. The authors also discussed the limitations of the current approaches and proposed future directions for medical image classification.</p>\",\"PeriodicalId\":9020,\"journal\":{\"name\":\"BMC Medical Imaging\",\"volume\":\"25 1\",\"pages\":\"156\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12057223/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12880-025-01701-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-025-01701-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Deep learning approaches for classification tasks in medical X-ray, MRI, and ultrasound images: a scoping review.
Medical images occupy the largest part of the existing medical information and dealing with them is challenging not only in terms of management but also in terms of interpretation and analysis. Hence, analyzing, understanding, and classifying them, becomes a very expensive and time-consuming task, especially if performed manually. Deep learning is considered a good solution for image classification, segmentation, and transfer learning tasks since it offers a large number of algorithms to solve such complex problems. PRISMA-ScR guidelines have been followed to conduct the scoping review with the aim of exploring how deep learning is being used to classify a broad spectrum of diseases diagnosed using an X-ray, MRI, or Ultrasound image modality.Findings contribute to the existing research by outlining the characteristics of the adopted datasets and the preprocessing or augmentation techniques applied to them. The authors summarized all relevant studies based on the deep learning models used and the accuracy achieved for classification. Whenever possible, they included details about the hardware and software configurations, as well as the architectural components of the models employed. Moreover, the models that achieved the highest accuracy in disease classification were highlighted, along with their strengths. The authors also discussed the limitations of the current approaches and proposed future directions for medical image classification.
期刊介绍:
BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.