{"title":"咖啡对大鼠硫代乙酰胺肾毒性的保护作用。","authors":"Syeda Nuzhat Fatima Zaidi, Amna Mohiuddin, Anar Gojayev, Afnan Jan, Abdullatif Bin Muhsinah, Ajmal Khan","doi":"10.2174/0113892010356725250329094402","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The purpose of the present research was to assess the protective role of coffee in thioacetamide-induced nephrotoxicity.</p><p><strong>Methods: </strong>The experimental period consisted of 18 weeks, divided into two phases. Four experimental groups were designed, each consisting of six rats. Group I was considered an untreated control group. Groups II and III were intraperitoneally injected with thioacetamide at a dose of 200 mg/kg body weight twice a week for twelve weeks during the first phase of the study. In the second phase, group II received saline, and group III and group IV received 0.4 mg/Kg of coffee daily for six weeks. The biochemical analysis was evaluated by the estimation of plasma urea, uric acid, creatinine, Malondialdehyde (MDA), Superoxide Dismutase (SOD), and catalase.</p><p><strong>Results: </strong>Thiocetamide-induced nephrotoxicity resulted in the reduction of body weight, superoxide dismutase, and catalase activities, and an increase in kidney weight, plasma urea, uric acid, creatinine, and tissue malondialdehyde. Supplementation with coffee effectively increased body weight while reducing elevated levels of urea, uric acid, creatinine, and MDA. It also restored SOD and catalase activities in Group III (TAA + Coffee-treated).</p><p><strong>Conclusion: </strong>This work shows that coffee can protect the kidneys against thioacetamide-induced nephrotoxicity in a rat model. It highlights the antioxidant potential of coffee by its ability to restore enzymatic antioxidant activity (SOD and catalase), lower oxidative stress markers (MDA), and enhance renal function measures (urea, creatinine, and uric acid). The study fills a significant gap by demonstrating coffee as a viable natural therapeutic agent for oxidative stressinduced kidney impairment, providing an alternative to conventional treatments with fewer side effects.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protective Role of Coffee in Thioacetamide-induced Nephrotoxicity: A Study in Rats.\",\"authors\":\"Syeda Nuzhat Fatima Zaidi, Amna Mohiuddin, Anar Gojayev, Afnan Jan, Abdullatif Bin Muhsinah, Ajmal Khan\",\"doi\":\"10.2174/0113892010356725250329094402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The purpose of the present research was to assess the protective role of coffee in thioacetamide-induced nephrotoxicity.</p><p><strong>Methods: </strong>The experimental period consisted of 18 weeks, divided into two phases. Four experimental groups were designed, each consisting of six rats. Group I was considered an untreated control group. Groups II and III were intraperitoneally injected with thioacetamide at a dose of 200 mg/kg body weight twice a week for twelve weeks during the first phase of the study. In the second phase, group II received saline, and group III and group IV received 0.4 mg/Kg of coffee daily for six weeks. The biochemical analysis was evaluated by the estimation of plasma urea, uric acid, creatinine, Malondialdehyde (MDA), Superoxide Dismutase (SOD), and catalase.</p><p><strong>Results: </strong>Thiocetamide-induced nephrotoxicity resulted in the reduction of body weight, superoxide dismutase, and catalase activities, and an increase in kidney weight, plasma urea, uric acid, creatinine, and tissue malondialdehyde. Supplementation with coffee effectively increased body weight while reducing elevated levels of urea, uric acid, creatinine, and MDA. It also restored SOD and catalase activities in Group III (TAA + Coffee-treated).</p><p><strong>Conclusion: </strong>This work shows that coffee can protect the kidneys against thioacetamide-induced nephrotoxicity in a rat model. It highlights the antioxidant potential of coffee by its ability to restore enzymatic antioxidant activity (SOD and catalase), lower oxidative stress markers (MDA), and enhance renal function measures (urea, creatinine, and uric acid). The study fills a significant gap by demonstrating coffee as a viable natural therapeutic agent for oxidative stressinduced kidney impairment, providing an alternative to conventional treatments with fewer side effects.</p>\",\"PeriodicalId\":10881,\"journal\":{\"name\":\"Current pharmaceutical biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892010356725250329094402\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010356725250329094402","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Protective Role of Coffee in Thioacetamide-induced Nephrotoxicity: A Study in Rats.
Objective: The purpose of the present research was to assess the protective role of coffee in thioacetamide-induced nephrotoxicity.
Methods: The experimental period consisted of 18 weeks, divided into two phases. Four experimental groups were designed, each consisting of six rats. Group I was considered an untreated control group. Groups II and III were intraperitoneally injected with thioacetamide at a dose of 200 mg/kg body weight twice a week for twelve weeks during the first phase of the study. In the second phase, group II received saline, and group III and group IV received 0.4 mg/Kg of coffee daily for six weeks. The biochemical analysis was evaluated by the estimation of plasma urea, uric acid, creatinine, Malondialdehyde (MDA), Superoxide Dismutase (SOD), and catalase.
Results: Thiocetamide-induced nephrotoxicity resulted in the reduction of body weight, superoxide dismutase, and catalase activities, and an increase in kidney weight, plasma urea, uric acid, creatinine, and tissue malondialdehyde. Supplementation with coffee effectively increased body weight while reducing elevated levels of urea, uric acid, creatinine, and MDA. It also restored SOD and catalase activities in Group III (TAA + Coffee-treated).
Conclusion: This work shows that coffee can protect the kidneys against thioacetamide-induced nephrotoxicity in a rat model. It highlights the antioxidant potential of coffee by its ability to restore enzymatic antioxidant activity (SOD and catalase), lower oxidative stress markers (MDA), and enhance renal function measures (urea, creatinine, and uric acid). The study fills a significant gap by demonstrating coffee as a viable natural therapeutic agent for oxidative stressinduced kidney impairment, providing an alternative to conventional treatments with fewer side effects.
期刊介绍:
Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include:
DNA/protein engineering and processing
Synthetic biotechnology
Omics (genomics, proteomics, metabolomics and systems biology)
Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes)
Drug delivery and targeting
Nanobiotechnology
Molecular pharmaceutics and molecular pharmacology
Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes)
Pharmacokinetics and pharmacodynamics
Applied Microbiology
Bioinformatics (computational biopharmaceutics and modeling)
Environmental biotechnology
Regenerative medicine (stem cells, tissue engineering and biomaterials)
Translational immunology (cell therapies, antibody engineering, xenotransplantation)
Industrial bioprocesses for drug production and development
Biosafety
Biotech ethics
Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome.
Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.