{"title":"整合全基因组关联研究结果的单步基因组最佳线性无偏预测模型提高基因组预测精度。","authors":"Zhixu Pang, Wannian Wang, Pu Huang, Hongzhi Zhang, Siying Zhang, Pengkun Yang, Liying Qiao, Jianhua Liu, Yangyang Pan, Kaijie Yang, Wenzhong Liu","doi":"10.3390/ani15091268","DOIUrl":null,"url":null,"abstract":"<p><p>Genomic selection (GS) is a genetic breeding method that uses genome-wide marker information to improve the accuracy of the prediction of complex traits. The single-step GBLUP (ssGBLUP) model, which integrates pedigree, phenotypic, and genomic data, has improved genomic prediction. However, ssGBLUP assumes that all markers contribute equally to genetic variance, which can limit its predictive accuracy, especially for traits controlled by major genes. To overcome this limitation, we integrate results from genome-wide association studies (GWAS) into an enhanced ssGBLUP framework, termed single-step genome-wide association assisted BLUP (ssGWABLUP). Our approach assigns differential weights to markers on the basis of their GWAS results, thereby increasing the contribution of effective markers while diminishing the influence of ineffective ones during the construction of the genomic relationship matrix. By incorporating pseudo quantitative trait nucleotides (pQTNs) as covariates, we aim to capture the effects of markers closely associated with major causal variants, leading to the development of the ssGWABLUP_pQTNs. Compared with weighted ssGBLUP (WssGBLUP), the ssGWABLUP model demonstrated superior accuracy and dispersion across different genetic architectures. We then compared the performance of our proposed ssGWABLUP_pQTNs model against both ssGBLUP and ssGWABLUP across various genetic scenarios. Our results demonstrate that ssGWABLUP_pQTNs outperforms other models in terms of prediction accuracy, particularly in scenarios with simpler genetic architectures. Additionally, evaluation using pig dataset confirmed the effectiveness of ssGWABLUP_pQTNs, highlighting its potential for practical breeding applications. The incorporation of pQTNs and a weighted genomic relationship matrix presents a promising and potentially scalable approach to further enhance genomic prediction, with potential implications for improving the accuracy of genomic selection in breeding programs.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"15 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12070965/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing Genomic Prediction Accuracy with a Single-Step Genomic Best Linear Unbiased Prediction Model Integrating Genome-Wide Association Study Results.\",\"authors\":\"Zhixu Pang, Wannian Wang, Pu Huang, Hongzhi Zhang, Siying Zhang, Pengkun Yang, Liying Qiao, Jianhua Liu, Yangyang Pan, Kaijie Yang, Wenzhong Liu\",\"doi\":\"10.3390/ani15091268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genomic selection (GS) is a genetic breeding method that uses genome-wide marker information to improve the accuracy of the prediction of complex traits. The single-step GBLUP (ssGBLUP) model, which integrates pedigree, phenotypic, and genomic data, has improved genomic prediction. However, ssGBLUP assumes that all markers contribute equally to genetic variance, which can limit its predictive accuracy, especially for traits controlled by major genes. To overcome this limitation, we integrate results from genome-wide association studies (GWAS) into an enhanced ssGBLUP framework, termed single-step genome-wide association assisted BLUP (ssGWABLUP). Our approach assigns differential weights to markers on the basis of their GWAS results, thereby increasing the contribution of effective markers while diminishing the influence of ineffective ones during the construction of the genomic relationship matrix. By incorporating pseudo quantitative trait nucleotides (pQTNs) as covariates, we aim to capture the effects of markers closely associated with major causal variants, leading to the development of the ssGWABLUP_pQTNs. Compared with weighted ssGBLUP (WssGBLUP), the ssGWABLUP model demonstrated superior accuracy and dispersion across different genetic architectures. We then compared the performance of our proposed ssGWABLUP_pQTNs model against both ssGBLUP and ssGWABLUP across various genetic scenarios. Our results demonstrate that ssGWABLUP_pQTNs outperforms other models in terms of prediction accuracy, particularly in scenarios with simpler genetic architectures. Additionally, evaluation using pig dataset confirmed the effectiveness of ssGWABLUP_pQTNs, highlighting its potential for practical breeding applications. The incorporation of pQTNs and a weighted genomic relationship matrix presents a promising and potentially scalable approach to further enhance genomic prediction, with potential implications for improving the accuracy of genomic selection in breeding programs.</p>\",\"PeriodicalId\":7955,\"journal\":{\"name\":\"Animals\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12070965/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animals\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/ani15091268\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani15091268","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Enhancing Genomic Prediction Accuracy with a Single-Step Genomic Best Linear Unbiased Prediction Model Integrating Genome-Wide Association Study Results.
Genomic selection (GS) is a genetic breeding method that uses genome-wide marker information to improve the accuracy of the prediction of complex traits. The single-step GBLUP (ssGBLUP) model, which integrates pedigree, phenotypic, and genomic data, has improved genomic prediction. However, ssGBLUP assumes that all markers contribute equally to genetic variance, which can limit its predictive accuracy, especially for traits controlled by major genes. To overcome this limitation, we integrate results from genome-wide association studies (GWAS) into an enhanced ssGBLUP framework, termed single-step genome-wide association assisted BLUP (ssGWABLUP). Our approach assigns differential weights to markers on the basis of their GWAS results, thereby increasing the contribution of effective markers while diminishing the influence of ineffective ones during the construction of the genomic relationship matrix. By incorporating pseudo quantitative trait nucleotides (pQTNs) as covariates, we aim to capture the effects of markers closely associated with major causal variants, leading to the development of the ssGWABLUP_pQTNs. Compared with weighted ssGBLUP (WssGBLUP), the ssGWABLUP model demonstrated superior accuracy and dispersion across different genetic architectures. We then compared the performance of our proposed ssGWABLUP_pQTNs model against both ssGBLUP and ssGWABLUP across various genetic scenarios. Our results demonstrate that ssGWABLUP_pQTNs outperforms other models in terms of prediction accuracy, particularly in scenarios with simpler genetic architectures. Additionally, evaluation using pig dataset confirmed the effectiveness of ssGWABLUP_pQTNs, highlighting its potential for practical breeding applications. The incorporation of pQTNs and a weighted genomic relationship matrix presents a promising and potentially scalable approach to further enhance genomic prediction, with potential implications for improving the accuracy of genomic selection in breeding programs.
AnimalsAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍:
Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).