{"title":"亚甲基蓝对对乙酰氨基酚所致肝损伤的保护作用的实验研究。","authors":"Majid Efati, Amirhossein Sahebkar, Shima Tavallaei, Soodeh Alidadi, Hossein Hosseini, Daryoush Hamidi-Alamdari","doi":"10.1080/01480545.2025.2485347","DOIUrl":null,"url":null,"abstract":"<p><p>Acetaminophen is a commonly used drug for mild to moderate pain relief; however, acetaminophen toxicity due to the formation of toxic metabolites is a major cause of drug-induced liver injury. Methylene blue is an FDA-approved drug for the treatment of methemoglobinemia and has potential applications in the treatment of carbon monoxide and cyanide poisoning. Leuco-methylene blue, a colorless form of methylene blue, is more effective in entering cells and counteracting oxidative stress, making it a valuable option in regulating mitochondrial function and ATP production. In this study, we aimed to evaluate the effect of LMB on liver damage caused by acetaminophen toxicity. Thirty-six rats were divided into six groups: control, APAP, NAC, LMB, MB, and NAC+LMB. All groups except the control received acetaminophen (1500 mg/kg), followed by treatments with NAC (100 mg/kg), LMB (5 mg/kg), MB (5 mg/kg), and NAC+LMB after 3 hours. The rats were sacrificed 24 hours post-acetaminophen administration. LMB significantly reduced serum levels of liver enzymes (ALT, AST, and ALP) and increased the expression of genes involved in mitochondrial biogenesis and antioxidant defense (PGC-1, Nrf2, and Tfam). Additionally, LMB significantly increased total antioxidant capacity and glutathione reductase levels, decreased the prooxidant-antioxidant balance (PAB), and reduced the expression of inflammatory cytokines (IL-6 and TNF-α) in the liver tissue. LMB effectively reduced the severity of acetaminophen-induced liver damage through antioxidant and anti-inflammatory effects. LMB can effectively ameliorate APAP-induced toxicity in rats, with comparable efficacy to N-acetylcysteine with respect to most complications of acetaminophen-induced toxicity in rats.</p>","PeriodicalId":11333,"journal":{"name":"Drug and Chemical Toxicology","volume":" ","pages":"1-13"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protective effect of Leuco-methylene blue against acetaminophen-induced liver injury: an experimental study.\",\"authors\":\"Majid Efati, Amirhossein Sahebkar, Shima Tavallaei, Soodeh Alidadi, Hossein Hosseini, Daryoush Hamidi-Alamdari\",\"doi\":\"10.1080/01480545.2025.2485347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acetaminophen is a commonly used drug for mild to moderate pain relief; however, acetaminophen toxicity due to the formation of toxic metabolites is a major cause of drug-induced liver injury. Methylene blue is an FDA-approved drug for the treatment of methemoglobinemia and has potential applications in the treatment of carbon monoxide and cyanide poisoning. Leuco-methylene blue, a colorless form of methylene blue, is more effective in entering cells and counteracting oxidative stress, making it a valuable option in regulating mitochondrial function and ATP production. In this study, we aimed to evaluate the effect of LMB on liver damage caused by acetaminophen toxicity. Thirty-six rats were divided into six groups: control, APAP, NAC, LMB, MB, and NAC+LMB. All groups except the control received acetaminophen (1500 mg/kg), followed by treatments with NAC (100 mg/kg), LMB (5 mg/kg), MB (5 mg/kg), and NAC+LMB after 3 hours. The rats were sacrificed 24 hours post-acetaminophen administration. LMB significantly reduced serum levels of liver enzymes (ALT, AST, and ALP) and increased the expression of genes involved in mitochondrial biogenesis and antioxidant defense (PGC-1, Nrf2, and Tfam). Additionally, LMB significantly increased total antioxidant capacity and glutathione reductase levels, decreased the prooxidant-antioxidant balance (PAB), and reduced the expression of inflammatory cytokines (IL-6 and TNF-α) in the liver tissue. LMB effectively reduced the severity of acetaminophen-induced liver damage through antioxidant and anti-inflammatory effects. LMB can effectively ameliorate APAP-induced toxicity in rats, with comparable efficacy to N-acetylcysteine with respect to most complications of acetaminophen-induced toxicity in rats.</p>\",\"PeriodicalId\":11333,\"journal\":{\"name\":\"Drug and Chemical Toxicology\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug and Chemical Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/01480545.2025.2485347\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug and Chemical Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01480545.2025.2485347","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Protective effect of Leuco-methylene blue against acetaminophen-induced liver injury: an experimental study.
Acetaminophen is a commonly used drug for mild to moderate pain relief; however, acetaminophen toxicity due to the formation of toxic metabolites is a major cause of drug-induced liver injury. Methylene blue is an FDA-approved drug for the treatment of methemoglobinemia and has potential applications in the treatment of carbon monoxide and cyanide poisoning. Leuco-methylene blue, a colorless form of methylene blue, is more effective in entering cells and counteracting oxidative stress, making it a valuable option in regulating mitochondrial function and ATP production. In this study, we aimed to evaluate the effect of LMB on liver damage caused by acetaminophen toxicity. Thirty-six rats were divided into six groups: control, APAP, NAC, LMB, MB, and NAC+LMB. All groups except the control received acetaminophen (1500 mg/kg), followed by treatments with NAC (100 mg/kg), LMB (5 mg/kg), MB (5 mg/kg), and NAC+LMB after 3 hours. The rats were sacrificed 24 hours post-acetaminophen administration. LMB significantly reduced serum levels of liver enzymes (ALT, AST, and ALP) and increased the expression of genes involved in mitochondrial biogenesis and antioxidant defense (PGC-1, Nrf2, and Tfam). Additionally, LMB significantly increased total antioxidant capacity and glutathione reductase levels, decreased the prooxidant-antioxidant balance (PAB), and reduced the expression of inflammatory cytokines (IL-6 and TNF-α) in the liver tissue. LMB effectively reduced the severity of acetaminophen-induced liver damage through antioxidant and anti-inflammatory effects. LMB can effectively ameliorate APAP-induced toxicity in rats, with comparable efficacy to N-acetylcysteine with respect to most complications of acetaminophen-induced toxicity in rats.
期刊介绍:
Drug and Chemical Toxicology publishes full-length research papers, review articles and short communications that encompass a broad spectrum of toxicological data surrounding risk assessment and harmful exposure. Manuscripts are considered according to their relevance to the journal.
Topics include both descriptive and mechanics research that illustrates the risk assessment implications of exposure to toxic agents. Examples of suitable topics include toxicological studies, which are structural examinations on the effects of dose, metabolism, and statistical or mechanism-based approaches to risk assessment. New findings and methods, along with safety evaluations, are also acceptable. Special issues may be reserved to publish symposium summaries, reviews in toxicology, and overviews of the practical interpretation and application of toxicological data.