基于泛免疫炎症值预测乳腺癌新辅助化疗病理完全缓解的Nomogram模型构建

IF 2.8 4区 医学 Q2 ONCOLOGY
Zhuowan Tian, Yiqing Xi, Mengting Chen, Meishun Hu, Fangfang Chen, Lei Wei, Jingwei Zhang
{"title":"基于泛免疫炎症值预测乳腺癌新辅助化疗病理完全缓解的Nomogram模型构建","authors":"Zhuowan Tian, Yiqing Xi, Mengting Chen, Meishun Hu, Fangfang Chen, Lei Wei, Jingwei Zhang","doi":"10.3390/curroncol32040194","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The pan-immune inflammation value (PIV) has unclear predictive utility for pathologic complete response (pCR) in breast cancer patients undergoing neoadjuvant chemotherapy (NAC). This study aimed to evaluate the PIV's predictive value and develop a nomogram integrating PIV for individualized pCR prediction.</p><p><strong>Methods: </strong>In a retrospective multicenter study of 507 NAC-treated patients (training cohort: 357; validation cohort: 150), independent predictors of pCR were identified through univariate and multivariate logistic regression. A nomogram was constructed and validated using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). Net reclassification improvement (NRI) and integrated discrimination improvement (IDI) evaluated the improvement in performance after incorporating the PIV indicator.</p><p><strong>Results: </strong>The high PIV patients (cutoff: 316.533) had significantly lower pCR rates than the low PIV patients (<i>p</i> < 0.001). The nomogram incorporating PIV, estrogen receptor (ER), human epidermal growth factor receptor-2 (Her2), tumor diameter, clinical node stage, and chemotherapy regimen showed excellent discrimination (training cohort area under the curve (AUC): 0.861, 95% confidence interval (CI): 0.821-0.901; validation cohort AUC: 0.815, 95% CI: 0.748-0.882). The calibration curves demonstrate high prediction accuracy (Hosmer-Lemeshow test: <i>p</i> > 0.05), while DCA, NRI (0.341, 95% CI: 0.181-0.500), and IDI (0.017, 95% CI: 0.004-0.029) confirm clinical utility.</p><p><strong>Conclusions: </strong>The PIV is an independent predictor of pCR, and the PIV-based nomogram provides a reliable tool for optimizing NAC response prediction in breast cancer.</p>","PeriodicalId":11012,"journal":{"name":"Current oncology","volume":"32 4","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026318/pdf/","citationCount":"0","resultStr":"{\"title\":\"Construction of a Nomogram Model for Predicting Pathologic Complete Response in Breast Cancer Neoadjuvant Chemotherapy Based on the Pan-Immune Inflammation Value.\",\"authors\":\"Zhuowan Tian, Yiqing Xi, Mengting Chen, Meishun Hu, Fangfang Chen, Lei Wei, Jingwei Zhang\",\"doi\":\"10.3390/curroncol32040194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The pan-immune inflammation value (PIV) has unclear predictive utility for pathologic complete response (pCR) in breast cancer patients undergoing neoadjuvant chemotherapy (NAC). This study aimed to evaluate the PIV's predictive value and develop a nomogram integrating PIV for individualized pCR prediction.</p><p><strong>Methods: </strong>In a retrospective multicenter study of 507 NAC-treated patients (training cohort: 357; validation cohort: 150), independent predictors of pCR were identified through univariate and multivariate logistic regression. A nomogram was constructed and validated using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). Net reclassification improvement (NRI) and integrated discrimination improvement (IDI) evaluated the improvement in performance after incorporating the PIV indicator.</p><p><strong>Results: </strong>The high PIV patients (cutoff: 316.533) had significantly lower pCR rates than the low PIV patients (<i>p</i> < 0.001). The nomogram incorporating PIV, estrogen receptor (ER), human epidermal growth factor receptor-2 (Her2), tumor diameter, clinical node stage, and chemotherapy regimen showed excellent discrimination (training cohort area under the curve (AUC): 0.861, 95% confidence interval (CI): 0.821-0.901; validation cohort AUC: 0.815, 95% CI: 0.748-0.882). The calibration curves demonstrate high prediction accuracy (Hosmer-Lemeshow test: <i>p</i> > 0.05), while DCA, NRI (0.341, 95% CI: 0.181-0.500), and IDI (0.017, 95% CI: 0.004-0.029) confirm clinical utility.</p><p><strong>Conclusions: </strong>The PIV is an independent predictor of pCR, and the PIV-based nomogram provides a reliable tool for optimizing NAC response prediction in breast cancer.</p>\",\"PeriodicalId\":11012,\"journal\":{\"name\":\"Current oncology\",\"volume\":\"32 4\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026318/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/curroncol32040194\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/curroncol32040194","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:泛免疫炎症值(PIV)对乳腺癌新辅助化疗(NAC)患者病理完全缓解(pCR)的预测作用尚不明确。本研究旨在评估PIV的预测价值,并建立一个整合PIV用于个性化pCR预测的nomogram。方法:在507例nac治疗患者的回顾性多中心研究中(训练队列:357;验证队列:150),通过单因素和多因素logistic回归确定了pCR的独立预测因子。采用受试者工作特征(ROC)曲线、校准曲线和决策曲线分析(DCA)构建并验证了nomogram。净重分类改善(NRI)和综合区分改善(IDI)评估了纳入PIV指标后的绩效改善。结果:高PIV患者(截止值:316.533)的pCR率显著低于低PIV患者(p < 0.001)。结合PIV、雌激素受体(ER)、人表皮生长因子受体-2 (Her2)、肿瘤直径、临床淋巴结分期、化疗方案的nomogram鉴别性较好(训练队列曲线下面积(AUC): 0.861, 95%可信区间(CI): 0.821-0.901;验证队列AUC: 0.815, 95% CI: 0.748-0.882)。校准曲线显示出较高的预测准确度(Hosmer-Lemeshow检验:p > 0.05),而DCA、NRI (0.341, 95% CI: 0.181-0.500)和IDI (0.017, 95% CI: 0.004-0.029)证实了临床应用。结论:PIV是pCR的独立预测因子,基于PIV的诺图为优化乳腺癌NAC反应预测提供了可靠的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of a Nomogram Model for Predicting Pathologic Complete Response in Breast Cancer Neoadjuvant Chemotherapy Based on the Pan-Immune Inflammation Value.

Background: The pan-immune inflammation value (PIV) has unclear predictive utility for pathologic complete response (pCR) in breast cancer patients undergoing neoadjuvant chemotherapy (NAC). This study aimed to evaluate the PIV's predictive value and develop a nomogram integrating PIV for individualized pCR prediction.

Methods: In a retrospective multicenter study of 507 NAC-treated patients (training cohort: 357; validation cohort: 150), independent predictors of pCR were identified through univariate and multivariate logistic regression. A nomogram was constructed and validated using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). Net reclassification improvement (NRI) and integrated discrimination improvement (IDI) evaluated the improvement in performance after incorporating the PIV indicator.

Results: The high PIV patients (cutoff: 316.533) had significantly lower pCR rates than the low PIV patients (p < 0.001). The nomogram incorporating PIV, estrogen receptor (ER), human epidermal growth factor receptor-2 (Her2), tumor diameter, clinical node stage, and chemotherapy regimen showed excellent discrimination (training cohort area under the curve (AUC): 0.861, 95% confidence interval (CI): 0.821-0.901; validation cohort AUC: 0.815, 95% CI: 0.748-0.882). The calibration curves demonstrate high prediction accuracy (Hosmer-Lemeshow test: p > 0.05), while DCA, NRI (0.341, 95% CI: 0.181-0.500), and IDI (0.017, 95% CI: 0.004-0.029) confirm clinical utility.

Conclusions: The PIV is an independent predictor of pCR, and the PIV-based nomogram provides a reliable tool for optimizing NAC response prediction in breast cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current oncology
Current oncology ONCOLOGY-
CiteScore
3.30
自引率
7.70%
发文量
664
审稿时长
1 months
期刊介绍: Current Oncology is a peer-reviewed, Canadian-based and internationally respected journal. Current Oncology represents a multidisciplinary medium encompassing health care workers in the field of cancer therapy in Canada to report upon and to review progress in the management of this disease. We encourage submissions from all fields of cancer medicine, including radiation oncology, surgical oncology, medical oncology, pediatric oncology, pathology, and cancer rehabilitation and survivorship. Articles published in the journal typically contain information that is relevant directly to clinical oncology practice, and have clear potential for application to the current or future practice of cancer medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信