应用人工智能检测肥厚性心肌病的心电图。

IF 8.4 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Circulation: Heart Failure Pub Date : 2025-07-01 Epub Date: 2025-05-14 DOI:10.1161/CIRCHEARTFAILURE.124.012667
James M Hillis, Bernardo C Bizzo, Sarah F Mercaldo, Ankita Ghatak, Ashley L MacDonald, Madeleine A Halle, Alexander S Schultz, Eric L'Italien, Victor Tam, Nicole K Bart, Filipe A Moura, Amine Awad, David Bargiela, Sarajune Dagen, Danielle Toland, Alexander J Blood, David A Gross, Karola S Jering, Mathew S Lopes, Nicholas A Marston, Victor D Nauffal, Keith J Dreyer, Benjamin M Scirica, Carolyn Y Ho
{"title":"应用人工智能检测肥厚性心肌病的心电图。","authors":"James M Hillis, Bernardo C Bizzo, Sarah F Mercaldo, Ankita Ghatak, Ashley L MacDonald, Madeleine A Halle, Alexander S Schultz, Eric L'Italien, Victor Tam, Nicole K Bart, Filipe A Moura, Amine Awad, David Bargiela, Sarajune Dagen, Danielle Toland, Alexander J Blood, David A Gross, Karola S Jering, Mathew S Lopes, Nicholas A Marston, Victor D Nauffal, Keith J Dreyer, Benjamin M Scirica, Carolyn Y Ho","doi":"10.1161/CIRCHEARTFAILURE.124.012667","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hypertrophic cardiomyopathy (HCM) is associated with significant morbidity and mortality, including sudden cardiac death in the young. Its prevalence is estimated to be 1 in 500, although many people are undiagnosed. The ability to screen electrocardiograms for its presence could improve detection and enable earlier diagnosis. This study evaluated the accuracy of an artificial intelligence device (Viz HCM) in detecting HCM based on a 12-lead electrocardiogram.</p><p><strong>Methods: </strong>The device was previously trained using deep learning and provides a binary outcome (HCM suspected or not suspected). This study included 293 HCM-positive and 2912 HCM-negative cases, which were selected from 3 hospitals based on chart review incorporating billing diagnostic codes, cardiac imaging, and electrocardiogram features. The device produced an output for 291 (99.3%) HCM-positive and 2905 (99.8%) HCM-negative cases.</p><p><strong>Results: </strong>The device identified HCM with sensitivity of 68.4% (95% CI, 62.8-73.5%), specificity of 99.1% (95% CI, 98.7-99.4%), and area under the curve of 0.975 (95% CI, 0.965-0.982). With assumed population prevalence of 0.002 (1 in 500), the positive predictive value was 13.7% (95% CI, 10.1-19.9%) and the negative predictive value was 99.9% (95% CI, 99.9-99.9%). The device demonstrated broadly consistent performance across demographic and technical subgroups.</p><p><strong>Conclusions: </strong>The device identified HCM based on a 12-lead electrocardiogram with good performance. Coupled with clinical expertise, it has the potential to augment HCM detection and diagnosis.</p>","PeriodicalId":10196,"journal":{"name":"Circulation: Heart Failure","volume":" ","pages":"e012667"},"PeriodicalIF":8.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of Hypertrophic Cardiomyopathy on Electrocardiogram Using Artificial Intelligence.\",\"authors\":\"James M Hillis, Bernardo C Bizzo, Sarah F Mercaldo, Ankita Ghatak, Ashley L MacDonald, Madeleine A Halle, Alexander S Schultz, Eric L'Italien, Victor Tam, Nicole K Bart, Filipe A Moura, Amine Awad, David Bargiela, Sarajune Dagen, Danielle Toland, Alexander J Blood, David A Gross, Karola S Jering, Mathew S Lopes, Nicholas A Marston, Victor D Nauffal, Keith J Dreyer, Benjamin M Scirica, Carolyn Y Ho\",\"doi\":\"10.1161/CIRCHEARTFAILURE.124.012667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Hypertrophic cardiomyopathy (HCM) is associated with significant morbidity and mortality, including sudden cardiac death in the young. Its prevalence is estimated to be 1 in 500, although many people are undiagnosed. The ability to screen electrocardiograms for its presence could improve detection and enable earlier diagnosis. This study evaluated the accuracy of an artificial intelligence device (Viz HCM) in detecting HCM based on a 12-lead electrocardiogram.</p><p><strong>Methods: </strong>The device was previously trained using deep learning and provides a binary outcome (HCM suspected or not suspected). This study included 293 HCM-positive and 2912 HCM-negative cases, which were selected from 3 hospitals based on chart review incorporating billing diagnostic codes, cardiac imaging, and electrocardiogram features. The device produced an output for 291 (99.3%) HCM-positive and 2905 (99.8%) HCM-negative cases.</p><p><strong>Results: </strong>The device identified HCM with sensitivity of 68.4% (95% CI, 62.8-73.5%), specificity of 99.1% (95% CI, 98.7-99.4%), and area under the curve of 0.975 (95% CI, 0.965-0.982). With assumed population prevalence of 0.002 (1 in 500), the positive predictive value was 13.7% (95% CI, 10.1-19.9%) and the negative predictive value was 99.9% (95% CI, 99.9-99.9%). The device demonstrated broadly consistent performance across demographic and technical subgroups.</p><p><strong>Conclusions: </strong>The device identified HCM based on a 12-lead electrocardiogram with good performance. Coupled with clinical expertise, it has the potential to augment HCM detection and diagnosis.</p>\",\"PeriodicalId\":10196,\"journal\":{\"name\":\"Circulation: Heart Failure\",\"volume\":\" \",\"pages\":\"e012667\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation: Heart Failure\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1161/CIRCHEARTFAILURE.124.012667\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation: Heart Failure","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCHEARTFAILURE.124.012667","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

背景:肥厚性心肌病(HCM)与显著的发病率和死亡率相关,包括年轻人的心源性猝死。其患病率估计为1 / 500,尽管许多人未被确诊。筛查心电图的能力可以提高检测和早期诊断。本研究评估了人工智能设备(即HCM)基于12导联心电图检测HCM的准确性。方法:该设备先前使用深度学习进行训练,并提供二元结果(怀疑HCM或不怀疑HCM)。本研究选取了3家医院的293例hcm阳性和2912例hcm阴性病例,通过结合账单诊断代码、心脏影像学和心电图特征进行图表审核。该装置产生了291例(99.3%)hcm阳性和2905例(99.8%)hcm阴性的输出。结果:该装置鉴别HCM的灵敏度为68.4% (95% CI, 62.8 ~ 73.5%),特异度为99.1% (95% CI, 98.7 ~ 99.4%),曲线下面积为0.975 (95% CI, 0.965 ~ 0.982)。假设人群患病率为0.002(1 / 500),阳性预测值为13.7% (95% CI, 10.1-19.9%),阴性预测值为99.9% (95% CI, 99.9-99.9%)。该设备在人口统计和技术分组中表现出广泛一致的性能。结论:该装置基于12导联心电图识别HCM,性能良好。再加上临床专业知识,它有可能增强HCM的检测和诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of Hypertrophic Cardiomyopathy on Electrocardiogram Using Artificial Intelligence.

Background: Hypertrophic cardiomyopathy (HCM) is associated with significant morbidity and mortality, including sudden cardiac death in the young. Its prevalence is estimated to be 1 in 500, although many people are undiagnosed. The ability to screen electrocardiograms for its presence could improve detection and enable earlier diagnosis. This study evaluated the accuracy of an artificial intelligence device (Viz HCM) in detecting HCM based on a 12-lead electrocardiogram.

Methods: The device was previously trained using deep learning and provides a binary outcome (HCM suspected or not suspected). This study included 293 HCM-positive and 2912 HCM-negative cases, which were selected from 3 hospitals based on chart review incorporating billing diagnostic codes, cardiac imaging, and electrocardiogram features. The device produced an output for 291 (99.3%) HCM-positive and 2905 (99.8%) HCM-negative cases.

Results: The device identified HCM with sensitivity of 68.4% (95% CI, 62.8-73.5%), specificity of 99.1% (95% CI, 98.7-99.4%), and area under the curve of 0.975 (95% CI, 0.965-0.982). With assumed population prevalence of 0.002 (1 in 500), the positive predictive value was 13.7% (95% CI, 10.1-19.9%) and the negative predictive value was 99.9% (95% CI, 99.9-99.9%). The device demonstrated broadly consistent performance across demographic and technical subgroups.

Conclusions: The device identified HCM based on a 12-lead electrocardiogram with good performance. Coupled with clinical expertise, it has the potential to augment HCM detection and diagnosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Circulation: Heart Failure
Circulation: Heart Failure 医学-心血管系统
CiteScore
12.90
自引率
3.10%
发文量
271
审稿时长
6-12 weeks
期刊介绍: Circulation: Heart Failure focuses on content related to heart failure, mechanical circulatory support, and heart transplant science and medicine. It considers studies conducted in humans or analyses of human data, as well as preclinical studies with direct clinical correlation or relevance. While primarily a clinical journal, it may publish novel basic and preclinical studies that significantly advance the field of heart failure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信