Sang-Seo Park, Tae-Woon Kim, Bo-Kyun Kim, Sang-Hoon Kim, Hye-Sang Park
{"title":"母亲运动对老年小鼠后代神经发育和肠道微生物群的影响。","authors":"Sang-Seo Park, Tae-Woon Kim, Bo-Kyun Kim, Sang-Hoon Kim, Hye-Sang Park","doi":"10.12965/jer.2550186.093","DOIUrl":null,"url":null,"abstract":"<p><p>The effects of maternal exercise on hippocampal neurogenesis, synaptic protein expression, and gut microbiome composition in the offspring of older females were investigated. Male offspring from female C57BL/6 mice were divided into four groups: offspring of young female group (CON), offspring of exercised young female group, offspring of advanced-age female group (AMA), and offspring of exercised advanced-age female group (AMA+EX). The exercised group received 8 weeks of treadmill training before and during pregnancy. Male offspring were assessed at 4 weeks of age. Hippocampal neurogenesis was assessed by 5-bromo-2'-deoxyuridine/neuronal double immunofluorescence staining. Expression of synaptic plasticity-related proteins, including brain-derived neurotrophic factor (BDNF) and postsynaptic density protein 95 (PSD-95), was analyzed by Western blot. Gut microbiome composition and diversity were assessed using 16S rRNA sequencing of fecal samples. Offspring born to AMA females had significantly reduced hippocampal neurogenesis and lower expression levels of BDNF and PSD-95 compared to the CON group. In the AMA+EX group, maternal treadmill exercise significantly improved these deficits, restoring both neurogenesis and synaptic protein expression. In contrast, gut microbiota analysis showed that microbial richness and alpha diversity were reduced in the offspring of exercised females, despite the relatively high diversity in the CON and AMA groups, especially in the AMA+EX group. Older mothers impair hippocampal neurogenesis and synaptic protein expression in offspring, and alter gut microbial diversity. Maternal exercise may alleviate age-related neurodevelopmental disorders, but may also reduce microbial diversity in the offspring's gut.</p>","PeriodicalId":15771,"journal":{"name":"Journal of Exercise Rehabilitation","volume":"21 2","pages":"47-52"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12061734/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impact of maternal exercise on neurodevelopment and gut microbiota in offspring from advanced-age mice.\",\"authors\":\"Sang-Seo Park, Tae-Woon Kim, Bo-Kyun Kim, Sang-Hoon Kim, Hye-Sang Park\",\"doi\":\"10.12965/jer.2550186.093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The effects of maternal exercise on hippocampal neurogenesis, synaptic protein expression, and gut microbiome composition in the offspring of older females were investigated. Male offspring from female C57BL/6 mice were divided into four groups: offspring of young female group (CON), offspring of exercised young female group, offspring of advanced-age female group (AMA), and offspring of exercised advanced-age female group (AMA+EX). The exercised group received 8 weeks of treadmill training before and during pregnancy. Male offspring were assessed at 4 weeks of age. Hippocampal neurogenesis was assessed by 5-bromo-2'-deoxyuridine/neuronal double immunofluorescence staining. Expression of synaptic plasticity-related proteins, including brain-derived neurotrophic factor (BDNF) and postsynaptic density protein 95 (PSD-95), was analyzed by Western blot. Gut microbiome composition and diversity were assessed using 16S rRNA sequencing of fecal samples. Offspring born to AMA females had significantly reduced hippocampal neurogenesis and lower expression levels of BDNF and PSD-95 compared to the CON group. In the AMA+EX group, maternal treadmill exercise significantly improved these deficits, restoring both neurogenesis and synaptic protein expression. In contrast, gut microbiota analysis showed that microbial richness and alpha diversity were reduced in the offspring of exercised females, despite the relatively high diversity in the CON and AMA groups, especially in the AMA+EX group. Older mothers impair hippocampal neurogenesis and synaptic protein expression in offspring, and alter gut microbial diversity. Maternal exercise may alleviate age-related neurodevelopmental disorders, but may also reduce microbial diversity in the offspring's gut.</p>\",\"PeriodicalId\":15771,\"journal\":{\"name\":\"Journal of Exercise Rehabilitation\",\"volume\":\"21 2\",\"pages\":\"47-52\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12061734/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Exercise Rehabilitation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12965/jer.2550186.093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"REHABILITATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Exercise Rehabilitation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12965/jer.2550186.093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"REHABILITATION","Score":null,"Total":0}
Impact of maternal exercise on neurodevelopment and gut microbiota in offspring from advanced-age mice.
The effects of maternal exercise on hippocampal neurogenesis, synaptic protein expression, and gut microbiome composition in the offspring of older females were investigated. Male offspring from female C57BL/6 mice were divided into four groups: offspring of young female group (CON), offspring of exercised young female group, offspring of advanced-age female group (AMA), and offspring of exercised advanced-age female group (AMA+EX). The exercised group received 8 weeks of treadmill training before and during pregnancy. Male offspring were assessed at 4 weeks of age. Hippocampal neurogenesis was assessed by 5-bromo-2'-deoxyuridine/neuronal double immunofluorescence staining. Expression of synaptic plasticity-related proteins, including brain-derived neurotrophic factor (BDNF) and postsynaptic density protein 95 (PSD-95), was analyzed by Western blot. Gut microbiome composition and diversity were assessed using 16S rRNA sequencing of fecal samples. Offspring born to AMA females had significantly reduced hippocampal neurogenesis and lower expression levels of BDNF and PSD-95 compared to the CON group. In the AMA+EX group, maternal treadmill exercise significantly improved these deficits, restoring both neurogenesis and synaptic protein expression. In contrast, gut microbiota analysis showed that microbial richness and alpha diversity were reduced in the offspring of exercised females, despite the relatively high diversity in the CON and AMA groups, especially in the AMA+EX group. Older mothers impair hippocampal neurogenesis and synaptic protein expression in offspring, and alter gut microbial diversity. Maternal exercise may alleviate age-related neurodevelopmental disorders, but may also reduce microbial diversity in the offspring's gut.
期刊介绍:
The Journal of Exercise Rehabilitation is the official journal of the Korean Society of Exercise Rehabilitation, and is published six times a year. Supplementary issues may be published. Its official abbreviation is "J Exerc Rehabil". It was launched in 2005. The title of the first volume was Journal of the Korean Society of Exercise Rehabilitation (pISSN 1976-6319). The journal title was changed to Journal of Exercise Rehabilitation from Volume 9 Number 2, 2013. The effects of exercise rehabilitation are very broad and in some cases exercise rehabilitation has different treatment areas than traditional rehabilitation. Exercise rehabilitation can be presented as a solution to new diseases in modern society and it can replace traditional medicine in economically disadvantaged areas. Exercise rehabilitation is very effective in overcoming metabolic diseases and also has no side effects. Furthermore, exercise rehabilitation shows new possibility for neuropsychiatric diseases, such as depression, autism, attention deficit hyperactivity disorder, schizophrenia, etc. The purpose of the Journal of Exercise Rehabilitation is to identify the effects of exercise rehabilitation on a variety of diseases and to identify mechanisms for exercise rehabilitation treatment. The Journal of Exercise Rehabilitation aims to serve as an intermediary for objective and scientific validation on the effects of exercise rehabilitation worldwide. The types of manuscripts include research articles, review articles, and articles invited by the Editorial Board. The Journal of Exercise Rehabilitation contains 6 sections: Basic research on exercise rehabilitation, Clinical research on exercise rehabilitation, Exercise rehabilitation pedagogy, Exercise rehabilitation education, Exercise rehabilitation psychology, and Exercise rehabilitation welfare.