{"title":"293变异体腺相关病毒生产能力差异遗传基础的生物信息学分析。","authors":"Christopher R Herzog, Junping Zhang, Xiaomin Feng, Thao Thi Dang, Xiangping Yu, Jie Huang, Fang Fang, Hongyu Gao, Xuhong Yu, Yue Wang, Renzhi Han, Yulong Liu, Kenneth Cornetta, Weidong Xiao, Weihong Xu","doi":"10.1089/hum.2025.002","DOIUrl":null,"url":null,"abstract":"<p><p>Human embryonic kidney 293 (HEK 293) cells are the main producer cell line for recombinant adeno-associated virus (rAAV) production. However, AAV vector yields among 293 clones vary considerably. To elucidate the biological basis for these differences, whole genomes of an adherent and a suspension 293 cell clone with high-yield rAAV were sequenced using nanopore technology. All 293 cell derivative lines showed a twofold copy number gain at the adenoviral integration site across, suggesting a genome duplication event. To our surprise, the two high-producer clones, despite having been separately developed, are biologically closely grouped together as compared to other commonly used 293 clones. Their genomes contain a similar adenoviral gene integration region, which likely leads to high expression of proteins that facilitate AAV replication and packaging. Thus, genome duplication in the adenovirus integration locus may be a key factor affecting AAV production yield.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":"36 9-10","pages":"801-813"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12171708/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bioinformatic Analysis of the Genetic Basis of Differential Adeno-Associated Virus Production Capability of 293 Variants.\",\"authors\":\"Christopher R Herzog, Junping Zhang, Xiaomin Feng, Thao Thi Dang, Xiangping Yu, Jie Huang, Fang Fang, Hongyu Gao, Xuhong Yu, Yue Wang, Renzhi Han, Yulong Liu, Kenneth Cornetta, Weidong Xiao, Weihong Xu\",\"doi\":\"10.1089/hum.2025.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human embryonic kidney 293 (HEK 293) cells are the main producer cell line for recombinant adeno-associated virus (rAAV) production. However, AAV vector yields among 293 clones vary considerably. To elucidate the biological basis for these differences, whole genomes of an adherent and a suspension 293 cell clone with high-yield rAAV were sequenced using nanopore technology. All 293 cell derivative lines showed a twofold copy number gain at the adenoviral integration site across, suggesting a genome duplication event. To our surprise, the two high-producer clones, despite having been separately developed, are biologically closely grouped together as compared to other commonly used 293 clones. Their genomes contain a similar adenoviral gene integration region, which likely leads to high expression of proteins that facilitate AAV replication and packaging. Thus, genome duplication in the adenovirus integration locus may be a key factor affecting AAV production yield.</p>\",\"PeriodicalId\":13007,\"journal\":{\"name\":\"Human gene therapy\",\"volume\":\"36 9-10\",\"pages\":\"801-813\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12171708/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human gene therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/hum.2025.002\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/hum.2025.002","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Bioinformatic Analysis of the Genetic Basis of Differential Adeno-Associated Virus Production Capability of 293 Variants.
Human embryonic kidney 293 (HEK 293) cells are the main producer cell line for recombinant adeno-associated virus (rAAV) production. However, AAV vector yields among 293 clones vary considerably. To elucidate the biological basis for these differences, whole genomes of an adherent and a suspension 293 cell clone with high-yield rAAV were sequenced using nanopore technology. All 293 cell derivative lines showed a twofold copy number gain at the adenoviral integration site across, suggesting a genome duplication event. To our surprise, the two high-producer clones, despite having been separately developed, are biologically closely grouped together as compared to other commonly used 293 clones. Their genomes contain a similar adenoviral gene integration region, which likely leads to high expression of proteins that facilitate AAV replication and packaging. Thus, genome duplication in the adenovirus integration locus may be a key factor affecting AAV production yield.
期刊介绍:
Human Gene Therapy is the premier, multidisciplinary journal covering all aspects of gene therapy. The Journal publishes in-depth coverage of DNA, RNA, and cell therapies by delivering the latest breakthroughs in research and technologies. Human Gene Therapy provides a central forum for scientific and clinical information, including ethical, legal, regulatory, social, and commercial issues, which enables the advancement and progress of therapeutic procedures leading to improved patient outcomes, and ultimately, to curing diseases.