{"title":"为什么组蛋白单甲基化和二甲基化会导致与LEDGF结合的显著差异?","authors":"Hinako X Suzuki, Hisashi Okumura, Satoru G Itoh","doi":"10.1063/5.0259337","DOIUrl":null,"url":null,"abstract":"<p><p>Lens epithelium-derived growth factor (LEDGF) is a chromatin-binding protein. It regulates gene transcription and is associated with acquired immunodeficiency syndrome and cancer. Its PWWP domain binds to histone H3 at K36 (H3K36). The binding affinity depends on H3K36 methylation. To investigate this dependency, we performed molecular dynamics simulations of the PWWP domain and histone fragments. We found that not only hydrophobic interaction but also electrostatic interaction is important. The binding is not maintained with nonmethylated and monomethylated H3K36 because the tips of these H3K36s form hydrogen bonds with water molecules, while dimethylated and trimethylated H3K36 form no such hydrogen bond, making this binding stable.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 18","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Why do histone monomethylation and dimethylation cause a significant difference in binding to LEDGF?\",\"authors\":\"Hinako X Suzuki, Hisashi Okumura, Satoru G Itoh\",\"doi\":\"10.1063/5.0259337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lens epithelium-derived growth factor (LEDGF) is a chromatin-binding protein. It regulates gene transcription and is associated with acquired immunodeficiency syndrome and cancer. Its PWWP domain binds to histone H3 at K36 (H3K36). The binding affinity depends on H3K36 methylation. To investigate this dependency, we performed molecular dynamics simulations of the PWWP domain and histone fragments. We found that not only hydrophobic interaction but also electrostatic interaction is important. The binding is not maintained with nonmethylated and monomethylated H3K36 because the tips of these H3K36s form hydrogen bonds with water molecules, while dimethylated and trimethylated H3K36 form no such hydrogen bond, making this binding stable.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"162 18\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0259337\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0259337","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Why do histone monomethylation and dimethylation cause a significant difference in binding to LEDGF?
Lens epithelium-derived growth factor (LEDGF) is a chromatin-binding protein. It regulates gene transcription and is associated with acquired immunodeficiency syndrome and cancer. Its PWWP domain binds to histone H3 at K36 (H3K36). The binding affinity depends on H3K36 methylation. To investigate this dependency, we performed molecular dynamics simulations of the PWWP domain and histone fragments. We found that not only hydrophobic interaction but also electrostatic interaction is important. The binding is not maintained with nonmethylated and monomethylated H3K36 because the tips of these H3K36s form hydrogen bonds with water molecules, while dimethylated and trimethylated H3K36 form no such hydrogen bond, making this binding stable.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.