Chih-Hao Liu, Li-Wei Fu, Shu-Wen Chang, Yen-Jen Wang, Jen-Yu Wang, Yu-Hung Wu, Homer H Chen, Sheng-Lung Huang
{"title":"基于深度学习的OCT图像分割在体人体皮肤核和层的定量评估。","authors":"Chih-Hao Liu, Li-Wei Fu, Shu-Wen Chang, Yen-Jen Wang, Jen-Yu Wang, Yu-Hung Wu, Homer H Chen, Sheng-Lung Huang","doi":"10.1364/BOE.558675","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advancements in cellular-resolution optical coherence tomography (OCT) have opened up possibilities for high-resolution and non-invasive clinical diagnosis. This study uses deep learning-based models on cross-sectional OCT images for <i>in vivo</i> human skin layers and keratinocyte nuclei segmentation. With U-Net as the basic framework, a 5-class segmentation model is developed. With deeply supervised learning objective functions, the global (skin layers) and local (nuclei) features were separately considered in designing our multi-class segmentation model to achieve an > 85% Dice coefficient accuracy through 5-fold cross-validation, enabling quantitative measurements for the healthy human skin structure. Specifically, we calculate the thickness of the stratum corneum, epidermis, and the cross-sectional area of keratinocyte nuclei as 22.71 ± 17.20 µm, 66.44 ± 11.61 µm, and 17.21 ± 9.33 µm<sup>2</sup>, respectively. These measurements align with clinical findings on human skin structures and can serve as standardized metrics for clinical assessment using OCT imaging. Moreover, we enhance the segmentation accuracy by addressing the limitations of microscopic system resolution and the variability in human annotations.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 4","pages":"1528-1545"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12047727/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantitative assessment of <i>in vivo</i> nuclei and layers of human skin by deep learning-based OCT image segmentation.\",\"authors\":\"Chih-Hao Liu, Li-Wei Fu, Shu-Wen Chang, Yen-Jen Wang, Jen-Yu Wang, Yu-Hung Wu, Homer H Chen, Sheng-Lung Huang\",\"doi\":\"10.1364/BOE.558675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent advancements in cellular-resolution optical coherence tomography (OCT) have opened up possibilities for high-resolution and non-invasive clinical diagnosis. This study uses deep learning-based models on cross-sectional OCT images for <i>in vivo</i> human skin layers and keratinocyte nuclei segmentation. With U-Net as the basic framework, a 5-class segmentation model is developed. With deeply supervised learning objective functions, the global (skin layers) and local (nuclei) features were separately considered in designing our multi-class segmentation model to achieve an > 85% Dice coefficient accuracy through 5-fold cross-validation, enabling quantitative measurements for the healthy human skin structure. Specifically, we calculate the thickness of the stratum corneum, epidermis, and the cross-sectional area of keratinocyte nuclei as 22.71 ± 17.20 µm, 66.44 ± 11.61 µm, and 17.21 ± 9.33 µm<sup>2</sup>, respectively. These measurements align with clinical findings on human skin structures and can serve as standardized metrics for clinical assessment using OCT imaging. Moreover, we enhance the segmentation accuracy by addressing the limitations of microscopic system resolution and the variability in human annotations.</p>\",\"PeriodicalId\":8969,\"journal\":{\"name\":\"Biomedical optics express\",\"volume\":\"16 4\",\"pages\":\"1528-1545\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12047727/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical optics express\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1364/BOE.558675\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.558675","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Quantitative assessment of in vivo nuclei and layers of human skin by deep learning-based OCT image segmentation.
Recent advancements in cellular-resolution optical coherence tomography (OCT) have opened up possibilities for high-resolution and non-invasive clinical diagnosis. This study uses deep learning-based models on cross-sectional OCT images for in vivo human skin layers and keratinocyte nuclei segmentation. With U-Net as the basic framework, a 5-class segmentation model is developed. With deeply supervised learning objective functions, the global (skin layers) and local (nuclei) features were separately considered in designing our multi-class segmentation model to achieve an > 85% Dice coefficient accuracy through 5-fold cross-validation, enabling quantitative measurements for the healthy human skin structure. Specifically, we calculate the thickness of the stratum corneum, epidermis, and the cross-sectional area of keratinocyte nuclei as 22.71 ± 17.20 µm, 66.44 ± 11.61 µm, and 17.21 ± 9.33 µm2, respectively. These measurements align with clinical findings on human skin structures and can serve as standardized metrics for clinical assessment using OCT imaging. Moreover, we enhance the segmentation accuracy by addressing the limitations of microscopic system resolution and the variability in human annotations.
期刊介绍:
The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including:
Tissue optics and spectroscopy
Novel microscopies
Optical coherence tomography
Diffuse and fluorescence tomography
Photoacoustic and multimodal imaging
Molecular imaging and therapies
Nanophotonic biosensing
Optical biophysics/photobiology
Microfluidic optical devices
Vision research.