Danilo Florentino Pereira, Irenilza de Alencar Nääs, Saman Abdanan Mehdizadeh
{"title":"光流、动乱指数和行走距离在肉鸡福利评价中的等价性","authors":"Danilo Florentino Pereira, Irenilza de Alencar Nääs, Saman Abdanan Mehdizadeh","doi":"10.3390/ani15091311","DOIUrl":null,"url":null,"abstract":"<p><p>Modern poultry production demands scalable and non-invasive methods to monitor animal welfare, particularly as broiler strains are increasingly bred for rapid growth, often at the expense of mobility and health. This study evaluates two advanced computer vision techniques-Optical Flow and the Unrest Index-to assess movement patterns in broiler chickens. Three commercial broiler strains (Hybro<sup>®</sup>, Cobb<sup>®</sup>, and Ross<sup>®</sup>) were housed in controlled environments and continuously monitored using ceiling-mounted video systems. Chicken movements were detected and tracked using a YOLO model, with centroid data informing both the Unrest Index and distance walked metrics. Optical Flow velocity metrics (mean, variance, skewness, and kurtosis) were extracted using the Farnebäck algorithm. Pearson correlation analyses revealed strong associations between Optical Flow variables and traditional movement indicators, with average velocity showing the strongest correlation to walked distance and the Unrest Index. Among the evaluated strains, Cobb<sup>®</sup> demonstrated the strongest correlation between Optical Flow variance and the Unrest Index, indicating a distinct movement profile. The equipment's movement and the camera's slight instability had a minimal effect on the Optical Flow measurement. Still, its strong correlation with the Unrest Index and walking distance accredits it as an effective method for high-resolution behavioral monitoring. This study supports the integration of Optical Flow and Unrest Index technologies into precision livestock systems, offering a foundation for predictive welfare management at scale.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"15 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12070830/pdf/","citationCount":"0","resultStr":"{\"title\":\"Equivalence Between Optical Flow, the Unrest Index, and Walking Distance to Estimate the Welfare of Broiler Chickens.\",\"authors\":\"Danilo Florentino Pereira, Irenilza de Alencar Nääs, Saman Abdanan Mehdizadeh\",\"doi\":\"10.3390/ani15091311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Modern poultry production demands scalable and non-invasive methods to monitor animal welfare, particularly as broiler strains are increasingly bred for rapid growth, often at the expense of mobility and health. This study evaluates two advanced computer vision techniques-Optical Flow and the Unrest Index-to assess movement patterns in broiler chickens. Three commercial broiler strains (Hybro<sup>®</sup>, Cobb<sup>®</sup>, and Ross<sup>®</sup>) were housed in controlled environments and continuously monitored using ceiling-mounted video systems. Chicken movements were detected and tracked using a YOLO model, with centroid data informing both the Unrest Index and distance walked metrics. Optical Flow velocity metrics (mean, variance, skewness, and kurtosis) were extracted using the Farnebäck algorithm. Pearson correlation analyses revealed strong associations between Optical Flow variables and traditional movement indicators, with average velocity showing the strongest correlation to walked distance and the Unrest Index. Among the evaluated strains, Cobb<sup>®</sup> demonstrated the strongest correlation between Optical Flow variance and the Unrest Index, indicating a distinct movement profile. The equipment's movement and the camera's slight instability had a minimal effect on the Optical Flow measurement. Still, its strong correlation with the Unrest Index and walking distance accredits it as an effective method for high-resolution behavioral monitoring. This study supports the integration of Optical Flow and Unrest Index technologies into precision livestock systems, offering a foundation for predictive welfare management at scale.</p>\",\"PeriodicalId\":7955,\"journal\":{\"name\":\"Animals\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12070830/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animals\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/ani15091311\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani15091311","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Equivalence Between Optical Flow, the Unrest Index, and Walking Distance to Estimate the Welfare of Broiler Chickens.
Modern poultry production demands scalable and non-invasive methods to monitor animal welfare, particularly as broiler strains are increasingly bred for rapid growth, often at the expense of mobility and health. This study evaluates two advanced computer vision techniques-Optical Flow and the Unrest Index-to assess movement patterns in broiler chickens. Three commercial broiler strains (Hybro®, Cobb®, and Ross®) were housed in controlled environments and continuously monitored using ceiling-mounted video systems. Chicken movements were detected and tracked using a YOLO model, with centroid data informing both the Unrest Index and distance walked metrics. Optical Flow velocity metrics (mean, variance, skewness, and kurtosis) were extracted using the Farnebäck algorithm. Pearson correlation analyses revealed strong associations between Optical Flow variables and traditional movement indicators, with average velocity showing the strongest correlation to walked distance and the Unrest Index. Among the evaluated strains, Cobb® demonstrated the strongest correlation between Optical Flow variance and the Unrest Index, indicating a distinct movement profile. The equipment's movement and the camera's slight instability had a minimal effect on the Optical Flow measurement. Still, its strong correlation with the Unrest Index and walking distance accredits it as an effective method for high-resolution behavioral monitoring. This study supports the integration of Optical Flow and Unrest Index technologies into precision livestock systems, offering a foundation for predictive welfare management at scale.
AnimalsAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍:
Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).