Tingli Qu, Nan Zhang, Chen Li, Xuyuan Liu, Keming Yun, Quan An
{"title":"网络药理学、分子对接、分子动力学模拟、实验验证分析揭示仁肾归脾丸治疗贫血的作用机制。","authors":"Tingli Qu, Nan Zhang, Chen Li, Xuyuan Liu, Keming Yun, Quan An","doi":"10.1007/s10529-025-03580-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To explore the action mechanisms of RGW that may treat anemia through the integration of network pharmacology, molecular docking, molecular dynamics simulation, and experiment verification.</p><p><strong>Result: </strong>In particular, Ginsenoside Rg4, Ginsenoside Rg1, 3,3',4,4'-Tetrahydroxy 2-methoxychalcone, Ginsenoside F1, Glycyrol, Chalconaringenin 4'-glucoside, Licochalcone B, 4',7-Dihydroxyflavone, Glycycoumarin, and Ginsenoside Rh1 were the core components, while TP53, STAT3, PIK3R1, SRC, HIF-1α were the core targets. The GO and KEGG analyses indicated that RGW may modulate multiple biological processes and pathways, including the PI3K-Akt, HIF-1, and NF-kappa B signaling pathways, as well as EGFR tyrosine kinase inhibitor resistance. Molecular docking and molecular dynamics simulations showed good affinity between the active components and core targets of RGW, with stable binding within 100 nano seconds. Experiment verification revealed RGW could improve the routine blood markers of mice, and decrease the level of HIF-1α significantly.</p><p><strong>Conclusion: </strong>RGW may treat anemia by regulating the PI3K-Akt and HIF-1 signaling pathways. It demonstrates the potential pharmacological mechanism of RGW in the treatment of anemia and provides a reference for clinical application of this formula.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"47 3","pages":"43"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network pharmacology, molecular docking, molecular dynamics simulation, and experiment verification analysis to reveal the action mechanism of RenShen Guipi Wan in the treatment of anemia.\",\"authors\":\"Tingli Qu, Nan Zhang, Chen Li, Xuyuan Liu, Keming Yun, Quan An\",\"doi\":\"10.1007/s10529-025-03580-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To explore the action mechanisms of RGW that may treat anemia through the integration of network pharmacology, molecular docking, molecular dynamics simulation, and experiment verification.</p><p><strong>Result: </strong>In particular, Ginsenoside Rg4, Ginsenoside Rg1, 3,3',4,4'-Tetrahydroxy 2-methoxychalcone, Ginsenoside F1, Glycyrol, Chalconaringenin 4'-glucoside, Licochalcone B, 4',7-Dihydroxyflavone, Glycycoumarin, and Ginsenoside Rh1 were the core components, while TP53, STAT3, PIK3R1, SRC, HIF-1α were the core targets. The GO and KEGG analyses indicated that RGW may modulate multiple biological processes and pathways, including the PI3K-Akt, HIF-1, and NF-kappa B signaling pathways, as well as EGFR tyrosine kinase inhibitor resistance. Molecular docking and molecular dynamics simulations showed good affinity between the active components and core targets of RGW, with stable binding within 100 nano seconds. Experiment verification revealed RGW could improve the routine blood markers of mice, and decrease the level of HIF-1α significantly.</p><p><strong>Conclusion: </strong>RGW may treat anemia by regulating the PI3K-Akt and HIF-1 signaling pathways. It demonstrates the potential pharmacological mechanism of RGW in the treatment of anemia and provides a reference for clinical application of this formula.</p>\",\"PeriodicalId\":8929,\"journal\":{\"name\":\"Biotechnology Letters\",\"volume\":\"47 3\",\"pages\":\"43\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10529-025-03580-w\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-025-03580-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Network pharmacology, molecular docking, molecular dynamics simulation, and experiment verification analysis to reveal the action mechanism of RenShen Guipi Wan in the treatment of anemia.
Objective: To explore the action mechanisms of RGW that may treat anemia through the integration of network pharmacology, molecular docking, molecular dynamics simulation, and experiment verification.
Result: In particular, Ginsenoside Rg4, Ginsenoside Rg1, 3,3',4,4'-Tetrahydroxy 2-methoxychalcone, Ginsenoside F1, Glycyrol, Chalconaringenin 4'-glucoside, Licochalcone B, 4',7-Dihydroxyflavone, Glycycoumarin, and Ginsenoside Rh1 were the core components, while TP53, STAT3, PIK3R1, SRC, HIF-1α were the core targets. The GO and KEGG analyses indicated that RGW may modulate multiple biological processes and pathways, including the PI3K-Akt, HIF-1, and NF-kappa B signaling pathways, as well as EGFR tyrosine kinase inhibitor resistance. Molecular docking and molecular dynamics simulations showed good affinity between the active components and core targets of RGW, with stable binding within 100 nano seconds. Experiment verification revealed RGW could improve the routine blood markers of mice, and decrease the level of HIF-1α significantly.
Conclusion: RGW may treat anemia by regulating the PI3K-Akt and HIF-1 signaling pathways. It demonstrates the potential pharmacological mechanism of RGW in the treatment of anemia and provides a reference for clinical application of this formula.
期刊介绍:
Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them.
All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included.
Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields.
The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories.
Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.