{"title":"[大鼠创伤性脑损伤后半暗区光学相干断层血管造影及微血管密度定量研究]。","authors":"Peng Zhong, Xiaodan Hu, Zhenzhou Wang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To observe the dynamic changes of microvascular injury and repair in the penumbra of traumatic brain injury (TBI) rats with effective cerebral perfusion microvascular imaging using optical coherence tomography angiography (OCTA).</p><p><strong>Methods: </strong>Transparent closed cranial windows were placed in craniotomy rats after TBI caused by weight drop. All the rats in TBI group and control group underwent head MRI examination on the first postoperative day, and the changes of cerebral cortical microvessel density were measured by OCTA through cranial windows on d0, d2, d4, d6, and d8. On the second day after the operation, the same number of rats in the two groups were selected to complete the immunohistochemical staining of brain tissue with pimonidazole, an indicator of hypoxia.</p><p><strong>Results: </strong>MRI T2W1 and immunohistochemical staining demonstrated that edema and hypoxia in the traumatic brain tissue extended deeply throughout the entire cortex. OCTA showed that the cortical surface veins of the rats in both groups were significantly dilated and tortuous after operation, and recovered to the postoperative day level on d8. The effective perfusion microvessel density of the rats in both groups gradually recovered after a temporary decrease, and the TBI group decreased from 39.38%±4.48% on d0 to 27.84%±6.01% on d2, which was significantly lower than that on d0, d6, and d8 (<i>P</i> < 0.05). The highest value was 61.71%±7.69% on d8, which was significantly higher than that on d0, d2, and d4 (<i>P</i> < 0.05). The control group decreased from 44.59%±7.78% on d0 to 36.69%±5.49% on d2, which was significantly lower than that on d0, d6, and d8 (<i>P</i> < 0.05). The highest value was 51.92%±5.96% on d8, which was significantly higher than that on d2, and d4 (<i>P</i> < 0.05). Comparing the two groups, the effective perfusion microvessel density in the TBI group was significantly lower than that in the control group on d2 (<i>P</i>=0.021), and significantly higher than that in the control group on d8 (<i>P</i>=0.030).</p><p><strong>Conclusion: </strong>OCTA can be used as a method of imaging and measurement of effective perfusion microvessels in the injured cerebral cortex of TBI rats. After TBI, the effective perfusion microvessel density in the wound penumbra gradually recovered after decreasing, and increased significantly on d8.</p>","PeriodicalId":8790,"journal":{"name":"北京大学学报(医学版)","volume":"57 2","pages":"262-266"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11992443/pdf/","citationCount":"0","resultStr":"{\"title\":\"[Optical coherence tomography angiography and microvessel density quantification in penumbra after traumatic brain injury in rats].\",\"authors\":\"Peng Zhong, Xiaodan Hu, Zhenzhou Wang\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To observe the dynamic changes of microvascular injury and repair in the penumbra of traumatic brain injury (TBI) rats with effective cerebral perfusion microvascular imaging using optical coherence tomography angiography (OCTA).</p><p><strong>Methods: </strong>Transparent closed cranial windows were placed in craniotomy rats after TBI caused by weight drop. All the rats in TBI group and control group underwent head MRI examination on the first postoperative day, and the changes of cerebral cortical microvessel density were measured by OCTA through cranial windows on d0, d2, d4, d6, and d8. On the second day after the operation, the same number of rats in the two groups were selected to complete the immunohistochemical staining of brain tissue with pimonidazole, an indicator of hypoxia.</p><p><strong>Results: </strong>MRI T2W1 and immunohistochemical staining demonstrated that edema and hypoxia in the traumatic brain tissue extended deeply throughout the entire cortex. OCTA showed that the cortical surface veins of the rats in both groups were significantly dilated and tortuous after operation, and recovered to the postoperative day level on d8. The effective perfusion microvessel density of the rats in both groups gradually recovered after a temporary decrease, and the TBI group decreased from 39.38%±4.48% on d0 to 27.84%±6.01% on d2, which was significantly lower than that on d0, d6, and d8 (<i>P</i> < 0.05). The highest value was 61.71%±7.69% on d8, which was significantly higher than that on d0, d2, and d4 (<i>P</i> < 0.05). The control group decreased from 44.59%±7.78% on d0 to 36.69%±5.49% on d2, which was significantly lower than that on d0, d6, and d8 (<i>P</i> < 0.05). The highest value was 51.92%±5.96% on d8, which was significantly higher than that on d2, and d4 (<i>P</i> < 0.05). Comparing the two groups, the effective perfusion microvessel density in the TBI group was significantly lower than that in the control group on d2 (<i>P</i>=0.021), and significantly higher than that in the control group on d8 (<i>P</i>=0.030).</p><p><strong>Conclusion: </strong>OCTA can be used as a method of imaging and measurement of effective perfusion microvessels in the injured cerebral cortex of TBI rats. After TBI, the effective perfusion microvessel density in the wound penumbra gradually recovered after decreasing, and increased significantly on d8.</p>\",\"PeriodicalId\":8790,\"journal\":{\"name\":\"北京大学学报(医学版)\",\"volume\":\"57 2\",\"pages\":\"262-266\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11992443/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"北京大学学报(医学版)\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"北京大学学报(医学版)","FirstCategoryId":"3","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
[Optical coherence tomography angiography and microvessel density quantification in penumbra after traumatic brain injury in rats].
Objective: To observe the dynamic changes of microvascular injury and repair in the penumbra of traumatic brain injury (TBI) rats with effective cerebral perfusion microvascular imaging using optical coherence tomography angiography (OCTA).
Methods: Transparent closed cranial windows were placed in craniotomy rats after TBI caused by weight drop. All the rats in TBI group and control group underwent head MRI examination on the first postoperative day, and the changes of cerebral cortical microvessel density were measured by OCTA through cranial windows on d0, d2, d4, d6, and d8. On the second day after the operation, the same number of rats in the two groups were selected to complete the immunohistochemical staining of brain tissue with pimonidazole, an indicator of hypoxia.
Results: MRI T2W1 and immunohistochemical staining demonstrated that edema and hypoxia in the traumatic brain tissue extended deeply throughout the entire cortex. OCTA showed that the cortical surface veins of the rats in both groups were significantly dilated and tortuous after operation, and recovered to the postoperative day level on d8. The effective perfusion microvessel density of the rats in both groups gradually recovered after a temporary decrease, and the TBI group decreased from 39.38%±4.48% on d0 to 27.84%±6.01% on d2, which was significantly lower than that on d0, d6, and d8 (P < 0.05). The highest value was 61.71%±7.69% on d8, which was significantly higher than that on d0, d2, and d4 (P < 0.05). The control group decreased from 44.59%±7.78% on d0 to 36.69%±5.49% on d2, which was significantly lower than that on d0, d6, and d8 (P < 0.05). The highest value was 51.92%±5.96% on d8, which was significantly higher than that on d2, and d4 (P < 0.05). Comparing the two groups, the effective perfusion microvessel density in the TBI group was significantly lower than that in the control group on d2 (P=0.021), and significantly higher than that in the control group on d8 (P=0.030).
Conclusion: OCTA can be used as a method of imaging and measurement of effective perfusion microvessels in the injured cerebral cortex of TBI rats. After TBI, the effective perfusion microvessel density in the wound penumbra gradually recovered after decreasing, and increased significantly on d8.
期刊介绍:
Beijing Da Xue Xue Bao Yi Xue Ban / Journal of Peking University (Health Sciences), established in 1959, is a national academic journal sponsored by Peking University, and its former name is Journal of Beijing Medical University. The coverage of the Journal includes basic medical sciences, clinical medicine, oral medicine, surgery, public health and epidemiology, pharmacology and pharmacy. Over the last few years, the Journal has published articles and reports covering major topics in the different special issues (e.g. research on disease genome, theory of drug withdrawal, mechanism and prevention of cardiovascular and cerebrovascular diseases, stomatology, orthopaedic, public health, urology and reproductive medicine). All the topics involve latest advances in medical sciences, hot topics in specific specialties, and prevention and treatment of major diseases.
The Journal has been indexed and abstracted by PubMed Central (PMC), MEDLINE/PubMed, EBSCO, Embase, Scopus, Chemical Abstracts (CA), Western Pacific Region Index Medicus (WPR), JSTChina, and almost all the Chinese sciences and technical index systems, including Chinese Science and Technology Paper Citation Database (CSTPCD), Chinese Science Citation Database (CSCD), China BioMedical Bibliographic Database (CBM), CMCI, Chinese Biological Abstracts, China National Academic Magazine Data-Base (CNKI), Wanfang Data (ChinaInfo), etc.