{"title":"基于cacl2的热液处理增强钛合金植入物上皮组织的密封性。","authors":"Yasushige Sakamoto, Akihiro Furuhashi, Albert Mufundirwa, Takeharu Sugiyama, Ikiru Atsuta, Yasunori Ayukawa","doi":"10.1116/6.0004359","DOIUrl":null,"url":null,"abstract":"<p><p>The long-term stability of dental implants is significantly influenced by their resistance to foreign factors in the peri-implant epithelium (PIE). Despite this, enhancing the sealing properties at the implant-PIE interface continues to be an unmet clinical need. Ti-6Al-4V (Ti64) alloy has higher tensile strength and hardness than pure titanium. This study was to verify whether hydrothermal treatment of Ti64 alloy implants with distilled water (HT-DW) or calcium chloride (CaCl2) solution (HT-Ca) could improve the sealing of the PIE around Ti64 implants. The existence of calcium (Ca) on the surface of HT-Ca implants was confirmed using x-ray photoelectron spectroscopy and synchrotron-based x-ray absorption fine structure techniques. These data showed that the surface was oxidized, and Ca existed in the form of anhydrous CaCl2 and calcium titanate. Laminin-332 (Ln), which is an essential component of epithelial adhesion structures, was observed between all types of implants and the PIE, 4 weeks after implantation in rat maxillae. Ln distribution over the entire epithelial interface was similar for the HT-Ca implant and a natural tooth. Moreover, the HT-Ca implant inhibited foreign body penetration, which indicated stronger gingival sealing at the implant-PIE interface, compared with the untreated and HT-DW implants. We also investigated the attachment of mouse-derived gingival epithelial cells (GE1). GE1 adherence was stronger and Ln expression levels were higher for HT-Ca plates compared with the untreated and HT-DW plates. Our results demonstrate that hydrothermal treatment of Ti64 implants with CaCl2 solution facilitates the growth of an effective soft tissue seal around the implant.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"20 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing epithelial tissue sealing of titanium alloy implants through CaCl2-based hydrothermal treatment.\",\"authors\":\"Yasushige Sakamoto, Akihiro Furuhashi, Albert Mufundirwa, Takeharu Sugiyama, Ikiru Atsuta, Yasunori Ayukawa\",\"doi\":\"10.1116/6.0004359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The long-term stability of dental implants is significantly influenced by their resistance to foreign factors in the peri-implant epithelium (PIE). Despite this, enhancing the sealing properties at the implant-PIE interface continues to be an unmet clinical need. Ti-6Al-4V (Ti64) alloy has higher tensile strength and hardness than pure titanium. This study was to verify whether hydrothermal treatment of Ti64 alloy implants with distilled water (HT-DW) or calcium chloride (CaCl2) solution (HT-Ca) could improve the sealing of the PIE around Ti64 implants. The existence of calcium (Ca) on the surface of HT-Ca implants was confirmed using x-ray photoelectron spectroscopy and synchrotron-based x-ray absorption fine structure techniques. These data showed that the surface was oxidized, and Ca existed in the form of anhydrous CaCl2 and calcium titanate. Laminin-332 (Ln), which is an essential component of epithelial adhesion structures, was observed between all types of implants and the PIE, 4 weeks after implantation in rat maxillae. Ln distribution over the entire epithelial interface was similar for the HT-Ca implant and a natural tooth. Moreover, the HT-Ca implant inhibited foreign body penetration, which indicated stronger gingival sealing at the implant-PIE interface, compared with the untreated and HT-DW implants. We also investigated the attachment of mouse-derived gingival epithelial cells (GE1). GE1 adherence was stronger and Ln expression levels were higher for HT-Ca plates compared with the untreated and HT-DW plates. Our results demonstrate that hydrothermal treatment of Ti64 implants with CaCl2 solution facilitates the growth of an effective soft tissue seal around the implant.</p>\",\"PeriodicalId\":9053,\"journal\":{\"name\":\"Biointerphases\",\"volume\":\"20 2\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerphases\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0004359\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0004359","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Enhancing epithelial tissue sealing of titanium alloy implants through CaCl2-based hydrothermal treatment.
The long-term stability of dental implants is significantly influenced by their resistance to foreign factors in the peri-implant epithelium (PIE). Despite this, enhancing the sealing properties at the implant-PIE interface continues to be an unmet clinical need. Ti-6Al-4V (Ti64) alloy has higher tensile strength and hardness than pure titanium. This study was to verify whether hydrothermal treatment of Ti64 alloy implants with distilled water (HT-DW) or calcium chloride (CaCl2) solution (HT-Ca) could improve the sealing of the PIE around Ti64 implants. The existence of calcium (Ca) on the surface of HT-Ca implants was confirmed using x-ray photoelectron spectroscopy and synchrotron-based x-ray absorption fine structure techniques. These data showed that the surface was oxidized, and Ca existed in the form of anhydrous CaCl2 and calcium titanate. Laminin-332 (Ln), which is an essential component of epithelial adhesion structures, was observed between all types of implants and the PIE, 4 weeks after implantation in rat maxillae. Ln distribution over the entire epithelial interface was similar for the HT-Ca implant and a natural tooth. Moreover, the HT-Ca implant inhibited foreign body penetration, which indicated stronger gingival sealing at the implant-PIE interface, compared with the untreated and HT-DW implants. We also investigated the attachment of mouse-derived gingival epithelial cells (GE1). GE1 adherence was stronger and Ln expression levels were higher for HT-Ca plates compared with the untreated and HT-DW plates. Our results demonstrate that hydrothermal treatment of Ti64 implants with CaCl2 solution facilitates the growth of an effective soft tissue seal around the implant.
期刊介绍:
Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee.
Topics include:
bio-surface modification
nano-bio interface
protein-surface interactions
cell-surface interactions
in vivo and in vitro systems
biofilms / biofouling
biosensors / biodiagnostics
bio on a chip
coatings
interface spectroscopy
biotribology / biorheology
molecular recognition
ambient diagnostic methods
interface modelling
adhesion phenomena.