{"title":"华顿水母间充质干细胞中hsp70相互作用蛋白羧基端过表达改善高血糖诱导肝损伤的新治疗策略","authors":"Shun-An Kan, Ayaz Ali, Shih-Wen Kao, Bruce Chi-Kang Tsai, Yueh-Min Lin, Dennis Jine-Yuan Hsieh, Chia-Hua Kuo, Wei-Wen Kuo, Shinn-Zong Lin, Chih-Yang Huang","doi":"10.1002/bab.2771","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes is a widespread metabolic disorder that significantly affects modern society. The liver plays a vital role in metabolism; however, hyperglycemia can induce liver damage and disrupt its normal functions. Wharton's jelly mesenchymal stem cells (WJMSCs) engineered to express the carboxyl terminus of HSP70-interacting protein (CHIP) have demonstrated protective effects against hyperglycemia-induced damage in various organs. Nonetheless, the potential hepatoprotective effects and underlying mechanisms of these modified stem cells in diabetic livers remain unclear. Therefore, this study aimed to evaluate the efficacy of CHIP-transfected WJMSCs in mitigating hyperglycemia-induced hepatic injury in diabetic rats and to elucidate the associated protective mechanisms. Diabetic rats received tail vein injections of WJMSCs either overexpressing or silenced for CHIP. Seven weeks post-transplantation, all rats were sacrificed, and liver tissues were harvested for histological staining and Western blot analysis. The findings indicated that CHIP-overexpressing WJMSCs significantly reversed hyperglycemia-induced liver damage, reducing tissue injury, fibrosis, and glycogen deposition. These cells also alleviated hepatic inflammation and apoptosis. Moreover, they regulated oxidative stress pathways by lowering gp91-phox, Rac1, and phosphorylated PKCζ levels, while enhancing phosphorylated Nrf2 and SOD-2 expression. Additionally, the modified WJMSCs suppressed STAT3 activation and downregulated FOXO3a, suggesting a role in attenuating fibrosis and triglyceride accumulation in diabetic livers. Overall, CHIP-overexpressing WJMSCs reversed hyperglycemia-induced hepatic alterations by mitigating inflammation and oxidative stress while also modulating pathways related to fibrosis and lipid metabolism. These results highlight the therapeutic potential of CHIP-modified WJMSCs in managing diabetic liver complications and offer promising avenues for future treatment strategies.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":"e2771"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Therapeutic Strategy for Ameliorating Hyperglycemia-Induced Liver Injury via Overexpression of the Carboxyl Terminus of HSP70-Interacting Protein in Wharton's Jelly Mesenchymal Stem Cells.\",\"authors\":\"Shun-An Kan, Ayaz Ali, Shih-Wen Kao, Bruce Chi-Kang Tsai, Yueh-Min Lin, Dennis Jine-Yuan Hsieh, Chia-Hua Kuo, Wei-Wen Kuo, Shinn-Zong Lin, Chih-Yang Huang\",\"doi\":\"10.1002/bab.2771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetes is a widespread metabolic disorder that significantly affects modern society. The liver plays a vital role in metabolism; however, hyperglycemia can induce liver damage and disrupt its normal functions. Wharton's jelly mesenchymal stem cells (WJMSCs) engineered to express the carboxyl terminus of HSP70-interacting protein (CHIP) have demonstrated protective effects against hyperglycemia-induced damage in various organs. Nonetheless, the potential hepatoprotective effects and underlying mechanisms of these modified stem cells in diabetic livers remain unclear. Therefore, this study aimed to evaluate the efficacy of CHIP-transfected WJMSCs in mitigating hyperglycemia-induced hepatic injury in diabetic rats and to elucidate the associated protective mechanisms. Diabetic rats received tail vein injections of WJMSCs either overexpressing or silenced for CHIP. Seven weeks post-transplantation, all rats were sacrificed, and liver tissues were harvested for histological staining and Western blot analysis. The findings indicated that CHIP-overexpressing WJMSCs significantly reversed hyperglycemia-induced liver damage, reducing tissue injury, fibrosis, and glycogen deposition. These cells also alleviated hepatic inflammation and apoptosis. Moreover, they regulated oxidative stress pathways by lowering gp91-phox, Rac1, and phosphorylated PKCζ levels, while enhancing phosphorylated Nrf2 and SOD-2 expression. Additionally, the modified WJMSCs suppressed STAT3 activation and downregulated FOXO3a, suggesting a role in attenuating fibrosis and triglyceride accumulation in diabetic livers. Overall, CHIP-overexpressing WJMSCs reversed hyperglycemia-induced hepatic alterations by mitigating inflammation and oxidative stress while also modulating pathways related to fibrosis and lipid metabolism. These results highlight the therapeutic potential of CHIP-modified WJMSCs in managing diabetic liver complications and offer promising avenues for future treatment strategies.</p>\",\"PeriodicalId\":9274,\"journal\":{\"name\":\"Biotechnology and applied biochemistry\",\"volume\":\" \",\"pages\":\"e2771\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and applied biochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/bab.2771\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and applied biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bab.2771","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A Novel Therapeutic Strategy for Ameliorating Hyperglycemia-Induced Liver Injury via Overexpression of the Carboxyl Terminus of HSP70-Interacting Protein in Wharton's Jelly Mesenchymal Stem Cells.
Diabetes is a widespread metabolic disorder that significantly affects modern society. The liver plays a vital role in metabolism; however, hyperglycemia can induce liver damage and disrupt its normal functions. Wharton's jelly mesenchymal stem cells (WJMSCs) engineered to express the carboxyl terminus of HSP70-interacting protein (CHIP) have demonstrated protective effects against hyperglycemia-induced damage in various organs. Nonetheless, the potential hepatoprotective effects and underlying mechanisms of these modified stem cells in diabetic livers remain unclear. Therefore, this study aimed to evaluate the efficacy of CHIP-transfected WJMSCs in mitigating hyperglycemia-induced hepatic injury in diabetic rats and to elucidate the associated protective mechanisms. Diabetic rats received tail vein injections of WJMSCs either overexpressing or silenced for CHIP. Seven weeks post-transplantation, all rats were sacrificed, and liver tissues were harvested for histological staining and Western blot analysis. The findings indicated that CHIP-overexpressing WJMSCs significantly reversed hyperglycemia-induced liver damage, reducing tissue injury, fibrosis, and glycogen deposition. These cells also alleviated hepatic inflammation and apoptosis. Moreover, they regulated oxidative stress pathways by lowering gp91-phox, Rac1, and phosphorylated PKCζ levels, while enhancing phosphorylated Nrf2 and SOD-2 expression. Additionally, the modified WJMSCs suppressed STAT3 activation and downregulated FOXO3a, suggesting a role in attenuating fibrosis and triglyceride accumulation in diabetic livers. Overall, CHIP-overexpressing WJMSCs reversed hyperglycemia-induced hepatic alterations by mitigating inflammation and oxidative stress while also modulating pathways related to fibrosis and lipid metabolism. These results highlight the therapeutic potential of CHIP-modified WJMSCs in managing diabetic liver complications and offer promising avenues for future treatment strategies.
期刊介绍:
Published since 1979, Biotechnology and Applied Biochemistry is dedicated to the rapid publication of high quality, significant research at the interface between life sciences and their technological exploitation.
The Editors will consider papers for publication based on their novelty and impact as well as their contribution to the advancement of medical biotechnology and industrial biotechnology, covering cutting-edge research in synthetic biology, systems biology, metabolic engineering, bioengineering, biomaterials, biosensing, and nano-biotechnology.