Xiaowen Yang, Xiaotong Lin, Zhenglin Zhou, Bokun Lin, Xin Liu
{"title":"芽孢杆菌对重金属胁迫的代谢反应:途径改变和代谢物谱。","authors":"Xiaowen Yang, Xiaotong Lin, Zhenglin Zhou, Bokun Lin, Xin Liu","doi":"10.1007/s10529-025-03589-1","DOIUrl":null,"url":null,"abstract":"<p><p>Heavy metal pollution is a global issue that poses significant risks to ecosystems and human health. Microorganisms offer a promising bioremediation approach due to their ability to mitigate metal-induced metabolic damage in an eco-friendly, efficient, and cost-effective manner. Among them, Gram-positive Bacillus species exhibit a high heavy metal adsorption capacity and secrete metabolites with diverse functional properties. Under heavy metal stress, these metabolites play a crucial role in alleviating metal-induced damage. However, the application of Bacillus metabolites in heavy metal remediation faces challenges, including prolonged treatment durations, the necessity for stable environmental conditions, and specific nutrient requirements.This review summarizes recent research on the effects of heavy metal exposure on the metabolic pathways and metabolites of Bacillus spp., elucidates their role in influencing metal bioavailability and chemical transformations, and explores innovative strategies to enhance the stability of Bacillus-mediated heavy metal remediation. The review aims to provide valuable insights for optimizing bioremediation strategies, facilitating the selection of efficient degrading strains, and advancing the sustainable management of heavy metal contamination.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"47 3","pages":"50"},"PeriodicalIF":2.0000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolic response of Bacillus spp. to heavy metal stress: pathway alterations and metabolite profiles.\",\"authors\":\"Xiaowen Yang, Xiaotong Lin, Zhenglin Zhou, Bokun Lin, Xin Liu\",\"doi\":\"10.1007/s10529-025-03589-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heavy metal pollution is a global issue that poses significant risks to ecosystems and human health. Microorganisms offer a promising bioremediation approach due to their ability to mitigate metal-induced metabolic damage in an eco-friendly, efficient, and cost-effective manner. Among them, Gram-positive Bacillus species exhibit a high heavy metal adsorption capacity and secrete metabolites with diverse functional properties. Under heavy metal stress, these metabolites play a crucial role in alleviating metal-induced damage. However, the application of Bacillus metabolites in heavy metal remediation faces challenges, including prolonged treatment durations, the necessity for stable environmental conditions, and specific nutrient requirements.This review summarizes recent research on the effects of heavy metal exposure on the metabolic pathways and metabolites of Bacillus spp., elucidates their role in influencing metal bioavailability and chemical transformations, and explores innovative strategies to enhance the stability of Bacillus-mediated heavy metal remediation. The review aims to provide valuable insights for optimizing bioremediation strategies, facilitating the selection of efficient degrading strains, and advancing the sustainable management of heavy metal contamination.</p>\",\"PeriodicalId\":8929,\"journal\":{\"name\":\"Biotechnology Letters\",\"volume\":\"47 3\",\"pages\":\"50\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10529-025-03589-1\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-025-03589-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Metabolic response of Bacillus spp. to heavy metal stress: pathway alterations and metabolite profiles.
Heavy metal pollution is a global issue that poses significant risks to ecosystems and human health. Microorganisms offer a promising bioremediation approach due to their ability to mitigate metal-induced metabolic damage in an eco-friendly, efficient, and cost-effective manner. Among them, Gram-positive Bacillus species exhibit a high heavy metal adsorption capacity and secrete metabolites with diverse functional properties. Under heavy metal stress, these metabolites play a crucial role in alleviating metal-induced damage. However, the application of Bacillus metabolites in heavy metal remediation faces challenges, including prolonged treatment durations, the necessity for stable environmental conditions, and specific nutrient requirements.This review summarizes recent research on the effects of heavy metal exposure on the metabolic pathways and metabolites of Bacillus spp., elucidates their role in influencing metal bioavailability and chemical transformations, and explores innovative strategies to enhance the stability of Bacillus-mediated heavy metal remediation. The review aims to provide valuable insights for optimizing bioremediation strategies, facilitating the selection of efficient degrading strains, and advancing the sustainable management of heavy metal contamination.
期刊介绍:
Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them.
All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included.
Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields.
The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories.
Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.