{"title":"稀有和共生放线菌:抗抗生素耐药性的新兴生物技术工具。","authors":"Ariel Mesquita, Davi Cerqueira, Matheus Rocha, Dino Silva, Claudia Martins, Bartolomeu Souza","doi":"10.1002/jobm.70036","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial resistance (AMR) poses a global threat to public health, with projections estimating 10 million deaths annually by 2050 if current trends persist. Actinobacteria, renowned for their biosynthetic capacity, are a key source of bioactive compounds, producing over 75% of known antibiotics. The adaptability of these microorganisms allows them to thrive in diverse habitats, including extreme ones, through the production of secondary metabolites that are of paramount importance for industry. Furthermore, actinobacteria are capable of living in symbiosis with several organisms, producing metabolites to protect and promote the growth of the host in exchange for nutrients and shelter. Some of these metabolites, such as antibiotics, play a key role in combating host pathogens and can be biotechnologically exploited to combat human resistant pathogens. This review presents the origins of AMR, the unique biology of actinobacteria, as well as their diverse biosynthetic pathways and their role in mitigating the AMR crisis. It also highlights the need for innovative biotechnological strategies for the isolation of rare and understudied actinobacteria, as symbiotic actinobacteria, to avoid rediscovery of molecules while finding new potential natural products and scaffolds for synthetic drugs. By providing a better understanding of their ecological, genomic, and metabolic diversity, this review provides valuable insights into the exploration of rare and symbiotic actinobacteria for developing antimicrobial solutions.</p>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":" ","pages":"e70036"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review on Rare and Symbiotic Actinobacteria: Emerging Biotechnological Tools Against Antimicrobial Resistance.\",\"authors\":\"Ariel Mesquita, Davi Cerqueira, Matheus Rocha, Dino Silva, Claudia Martins, Bartolomeu Souza\",\"doi\":\"10.1002/jobm.70036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antimicrobial resistance (AMR) poses a global threat to public health, with projections estimating 10 million deaths annually by 2050 if current trends persist. Actinobacteria, renowned for their biosynthetic capacity, are a key source of bioactive compounds, producing over 75% of known antibiotics. The adaptability of these microorganisms allows them to thrive in diverse habitats, including extreme ones, through the production of secondary metabolites that are of paramount importance for industry. Furthermore, actinobacteria are capable of living in symbiosis with several organisms, producing metabolites to protect and promote the growth of the host in exchange for nutrients and shelter. Some of these metabolites, such as antibiotics, play a key role in combating host pathogens and can be biotechnologically exploited to combat human resistant pathogens. This review presents the origins of AMR, the unique biology of actinobacteria, as well as their diverse biosynthetic pathways and their role in mitigating the AMR crisis. It also highlights the need for innovative biotechnological strategies for the isolation of rare and understudied actinobacteria, as symbiotic actinobacteria, to avoid rediscovery of molecules while finding new potential natural products and scaffolds for synthetic drugs. By providing a better understanding of their ecological, genomic, and metabolic diversity, this review provides valuable insights into the exploration of rare and symbiotic actinobacteria for developing antimicrobial solutions.</p>\",\"PeriodicalId\":15101,\"journal\":{\"name\":\"Journal of Basic Microbiology\",\"volume\":\" \",\"pages\":\"e70036\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Basic Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/jobm.70036\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Basic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jobm.70036","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
A Review on Rare and Symbiotic Actinobacteria: Emerging Biotechnological Tools Against Antimicrobial Resistance.
Antimicrobial resistance (AMR) poses a global threat to public health, with projections estimating 10 million deaths annually by 2050 if current trends persist. Actinobacteria, renowned for their biosynthetic capacity, are a key source of bioactive compounds, producing over 75% of known antibiotics. The adaptability of these microorganisms allows them to thrive in diverse habitats, including extreme ones, through the production of secondary metabolites that are of paramount importance for industry. Furthermore, actinobacteria are capable of living in symbiosis with several organisms, producing metabolites to protect and promote the growth of the host in exchange for nutrients and shelter. Some of these metabolites, such as antibiotics, play a key role in combating host pathogens and can be biotechnologically exploited to combat human resistant pathogens. This review presents the origins of AMR, the unique biology of actinobacteria, as well as their diverse biosynthetic pathways and their role in mitigating the AMR crisis. It also highlights the need for innovative biotechnological strategies for the isolation of rare and understudied actinobacteria, as symbiotic actinobacteria, to avoid rediscovery of molecules while finding new potential natural products and scaffolds for synthetic drugs. By providing a better understanding of their ecological, genomic, and metabolic diversity, this review provides valuable insights into the exploration of rare and symbiotic actinobacteria for developing antimicrobial solutions.
期刊介绍:
The Journal of Basic Microbiology (JBM) publishes primary research papers on both procaryotic and eucaryotic microorganisms, including bacteria, archaea, fungi, algae, protozoans, phages, viruses, viroids and prions.
Papers published deal with:
microbial interactions (pathogenic, mutualistic, environmental),
ecology,
physiology,
genetics and cell biology/development,
new methodologies, i.e., new imaging technologies (e.g. video-fluorescence microscopy, modern TEM applications)
novel molecular biology methods (e.g. PCR-based gene targeting or cassettes for cloning of GFP constructs).