{"title":"硅基可重构可编程全光信号处理芯片的研究进展。","authors":"Jing Xu, Wenchan Dong, Qingzhong Huang, Yujia Zhang, Yuchen Yin, Zhenyu Zhao, Desheng Zeng, Xiaoyan Gao, Wentao Gu, Zihao Yang, Hanghang Li, Xinjie Han, Yong Geng, Kunpeng Zhai, Bei Chen, Xin Fu, Lei Lei, Xiaojun Wu, Jianji Dong, Yikai Su, Ming Li, Jianguo Liu, Ninghua Zhu, Xuhan Guo, Heng Zhou, Huashun Wen, Kun Qiu, Xinliang Zhang","doi":"10.1007/s12200-025-00154-6","DOIUrl":null,"url":null,"abstract":"<p><p>Taking the advantage of ultrafast optical linear and nonlinear effects, all-optical signal processing (AOSP) enables manipulation, regeneration, and computing of information directly in optical domain without resorting to electronics. As a promising photonic integration platform, silicon-on-insulator (SOI) has the advantage of complementary metal oxide semiconductor (CMOS) compatibility, low-loss, compact size as well as large optical nonlinearities. In this paper, we review the recent progress in the project granted to develop silicon-based reconfigurable AOSP chips, which aims to combine the merits of AOSP and silicon photonics to solve the unsustainable cost and energy challenges in future communication and big data applications. Three key challenges are identified in this project: (1) how to finely manipulate and reconfigure optical fields, (2) how to achieve ultra-low loss integrated silicon waveguides and significant enhancement of nonlinear effects, (3) how to mitigate crosstalk between optical, electrical and thermal components. By focusing on these key issues, the following major achievements are realized during the project. First, ultra-low loss silicon-based waveguides as well as ultra-high quality microresonators are developed by advancing key fabrication technologies as well as device structures. Integrated photonic filters with bandwidth and free spectral range reconfigurable in a wide range were realized to finely manipulate and select input light fields with a high degree of freedom. Second, several mechanisms and new designs that aim at nonlinear enhancement have been proposed, including optical ridge waveguides with reverse biased PIN junction, slot waveguides, multimode waveguides and parity-time symmetry coupled microresonators. Advanced AOSP operations are verified with these novel designs. Logical computations at 100 Gbit/s were demonstrated with self-developed, monolithic integrated programmable optical logic array. High-dimensional multi-value logic operations based on the four-wave mixing effect are realized. Multi-channel all-optical amplitude and phase regeneration technology is developed, and a multi-channel, multi-format, reconfigurable all-optical regeneration chip is realized. Expanding regeneration capacity via spatial dimension is also verified. Third, the crosstalk from optical as well as thermal coupling due to high-density integration are mitigated by developing novel optical designs and advanced packaging technologies, enabling high-density, small size, multi-channel and multi-functional operation with low power consumption. Finally, four programmable AOSP chips are developed, i.e., programmable photonic filter chip, programmable photonic logic operation chip, multi-dimensional all-optical regeneration chip, and multi-channel and multi-functional AOSP chip with packaging. The major achievements developed in this project pave the way toward ultra-low loss, high-speed, high-efficient, high-density information processing in future classical and non-classical communication and computing applications.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"18 1","pages":"10"},"PeriodicalIF":4.1000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12069217/pdf/","citationCount":"0","resultStr":"{\"title\":\"Progress in silicon-based reconfigurable and programmable all-optical signal processing chips.\",\"authors\":\"Jing Xu, Wenchan Dong, Qingzhong Huang, Yujia Zhang, Yuchen Yin, Zhenyu Zhao, Desheng Zeng, Xiaoyan Gao, Wentao Gu, Zihao Yang, Hanghang Li, Xinjie Han, Yong Geng, Kunpeng Zhai, Bei Chen, Xin Fu, Lei Lei, Xiaojun Wu, Jianji Dong, Yikai Su, Ming Li, Jianguo Liu, Ninghua Zhu, Xuhan Guo, Heng Zhou, Huashun Wen, Kun Qiu, Xinliang Zhang\",\"doi\":\"10.1007/s12200-025-00154-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Taking the advantage of ultrafast optical linear and nonlinear effects, all-optical signal processing (AOSP) enables manipulation, regeneration, and computing of information directly in optical domain without resorting to electronics. As a promising photonic integration platform, silicon-on-insulator (SOI) has the advantage of complementary metal oxide semiconductor (CMOS) compatibility, low-loss, compact size as well as large optical nonlinearities. In this paper, we review the recent progress in the project granted to develop silicon-based reconfigurable AOSP chips, which aims to combine the merits of AOSP and silicon photonics to solve the unsustainable cost and energy challenges in future communication and big data applications. Three key challenges are identified in this project: (1) how to finely manipulate and reconfigure optical fields, (2) how to achieve ultra-low loss integrated silicon waveguides and significant enhancement of nonlinear effects, (3) how to mitigate crosstalk between optical, electrical and thermal components. By focusing on these key issues, the following major achievements are realized during the project. First, ultra-low loss silicon-based waveguides as well as ultra-high quality microresonators are developed by advancing key fabrication technologies as well as device structures. Integrated photonic filters with bandwidth and free spectral range reconfigurable in a wide range were realized to finely manipulate and select input light fields with a high degree of freedom. Second, several mechanisms and new designs that aim at nonlinear enhancement have been proposed, including optical ridge waveguides with reverse biased PIN junction, slot waveguides, multimode waveguides and parity-time symmetry coupled microresonators. Advanced AOSP operations are verified with these novel designs. Logical computations at 100 Gbit/s were demonstrated with self-developed, monolithic integrated programmable optical logic array. High-dimensional multi-value logic operations based on the four-wave mixing effect are realized. Multi-channel all-optical amplitude and phase regeneration technology is developed, and a multi-channel, multi-format, reconfigurable all-optical regeneration chip is realized. Expanding regeneration capacity via spatial dimension is also verified. Third, the crosstalk from optical as well as thermal coupling due to high-density integration are mitigated by developing novel optical designs and advanced packaging technologies, enabling high-density, small size, multi-channel and multi-functional operation with low power consumption. Finally, four programmable AOSP chips are developed, i.e., programmable photonic filter chip, programmable photonic logic operation chip, multi-dimensional all-optical regeneration chip, and multi-channel and multi-functional AOSP chip with packaging. The major achievements developed in this project pave the way toward ultra-low loss, high-speed, high-efficient, high-density information processing in future classical and non-classical communication and computing applications.</p>\",\"PeriodicalId\":12685,\"journal\":{\"name\":\"Frontiers of Optoelectronics\",\"volume\":\"18 1\",\"pages\":\"10\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12069217/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Optoelectronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12200-025-00154-6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-025-00154-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Progress in silicon-based reconfigurable and programmable all-optical signal processing chips.
Taking the advantage of ultrafast optical linear and nonlinear effects, all-optical signal processing (AOSP) enables manipulation, regeneration, and computing of information directly in optical domain without resorting to electronics. As a promising photonic integration platform, silicon-on-insulator (SOI) has the advantage of complementary metal oxide semiconductor (CMOS) compatibility, low-loss, compact size as well as large optical nonlinearities. In this paper, we review the recent progress in the project granted to develop silicon-based reconfigurable AOSP chips, which aims to combine the merits of AOSP and silicon photonics to solve the unsustainable cost and energy challenges in future communication and big data applications. Three key challenges are identified in this project: (1) how to finely manipulate and reconfigure optical fields, (2) how to achieve ultra-low loss integrated silicon waveguides and significant enhancement of nonlinear effects, (3) how to mitigate crosstalk between optical, electrical and thermal components. By focusing on these key issues, the following major achievements are realized during the project. First, ultra-low loss silicon-based waveguides as well as ultra-high quality microresonators are developed by advancing key fabrication technologies as well as device structures. Integrated photonic filters with bandwidth and free spectral range reconfigurable in a wide range were realized to finely manipulate and select input light fields with a high degree of freedom. Second, several mechanisms and new designs that aim at nonlinear enhancement have been proposed, including optical ridge waveguides with reverse biased PIN junction, slot waveguides, multimode waveguides and parity-time symmetry coupled microresonators. Advanced AOSP operations are verified with these novel designs. Logical computations at 100 Gbit/s were demonstrated with self-developed, monolithic integrated programmable optical logic array. High-dimensional multi-value logic operations based on the four-wave mixing effect are realized. Multi-channel all-optical amplitude and phase regeneration technology is developed, and a multi-channel, multi-format, reconfigurable all-optical regeneration chip is realized. Expanding regeneration capacity via spatial dimension is also verified. Third, the crosstalk from optical as well as thermal coupling due to high-density integration are mitigated by developing novel optical designs and advanced packaging technologies, enabling high-density, small size, multi-channel and multi-functional operation with low power consumption. Finally, four programmable AOSP chips are developed, i.e., programmable photonic filter chip, programmable photonic logic operation chip, multi-dimensional all-optical regeneration chip, and multi-channel and multi-functional AOSP chip with packaging. The major achievements developed in this project pave the way toward ultra-low loss, high-speed, high-efficient, high-density information processing in future classical and non-classical communication and computing applications.
期刊介绍:
Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on.
Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics.
Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology.
● Presents the latest developments in optoelectronics and optics
● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications
● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more