Tulika Malik, Jessica M Sidisky, Sam Jones, Alexander Winters, Brandon Hocking, Jocelyn Rotay, Ellen N Huhulea, Sara Moran, Bali Connors, Daniel T Babcock
{"title":"肌萎缩侧索硬化症模型中成年果蝇运动神经元的突触缺陷。","authors":"Tulika Malik, Jessica M Sidisky, Sam Jones, Alexander Winters, Brandon Hocking, Jocelyn Rotay, Ellen N Huhulea, Sara Moran, Bali Connors, Daniel T Babcock","doi":"10.1093/hmg/ddaf068","DOIUrl":null,"url":null,"abstract":"<p><p>Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that primarily affects motor neurons in the brain and spinal cord. Like other neurodegenerative diseases, defects in synaptic integrity are among the earliest hallmarks of ALS. However, the specific impairments to synaptic integrity remain unclear. To better understand synaptic defects in ALS, we expressed either wild-type or mutant Fused in Sarcoma (FUS), an RNA binding protein that is often mis-localized in ALS, in adult motor neurons. Using optogenetic stimulation of the motor neurons innervating the Ventral Abdominal Muscles (VAMs), we found that expression of mutant FUS disrupted the functional integrity of these synapses. This functional deficit was followed by disruption of synaptic gross morphology, localization of pre- and post-synaptic proteins, and cytoskeleton integrity. We found similar synaptic defects using the motor neurons innervating the Dorsal Longitudinal Muscles (DLMs), where expression of mutant FUS resulted in a progressive loss of flight ability along with disruption of active zone distribution. Our findings uncover defects in synaptic function that precede changes in synaptic structure, suggesting that synaptic function is more sensitive to this ALS model. Highlighting the earliest synaptic defects in this disease model should help to identify strategies for preventing later stages of disease progression.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synaptic defects in adult drosophila motor neurons in a model of amyotrophic lateral sclerosis.\",\"authors\":\"Tulika Malik, Jessica M Sidisky, Sam Jones, Alexander Winters, Brandon Hocking, Jocelyn Rotay, Ellen N Huhulea, Sara Moran, Bali Connors, Daniel T Babcock\",\"doi\":\"10.1093/hmg/ddaf068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that primarily affects motor neurons in the brain and spinal cord. Like other neurodegenerative diseases, defects in synaptic integrity are among the earliest hallmarks of ALS. However, the specific impairments to synaptic integrity remain unclear. To better understand synaptic defects in ALS, we expressed either wild-type or mutant Fused in Sarcoma (FUS), an RNA binding protein that is often mis-localized in ALS, in adult motor neurons. Using optogenetic stimulation of the motor neurons innervating the Ventral Abdominal Muscles (VAMs), we found that expression of mutant FUS disrupted the functional integrity of these synapses. This functional deficit was followed by disruption of synaptic gross morphology, localization of pre- and post-synaptic proteins, and cytoskeleton integrity. We found similar synaptic defects using the motor neurons innervating the Dorsal Longitudinal Muscles (DLMs), where expression of mutant FUS resulted in a progressive loss of flight ability along with disruption of active zone distribution. Our findings uncover defects in synaptic function that precede changes in synaptic structure, suggesting that synaptic function is more sensitive to this ALS model. Highlighting the earliest synaptic defects in this disease model should help to identify strategies for preventing later stages of disease progression.</p>\",\"PeriodicalId\":13070,\"journal\":{\"name\":\"Human molecular genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human molecular genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/hmg/ddaf068\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddaf068","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Synaptic defects in adult drosophila motor neurons in a model of amyotrophic lateral sclerosis.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that primarily affects motor neurons in the brain and spinal cord. Like other neurodegenerative diseases, defects in synaptic integrity are among the earliest hallmarks of ALS. However, the specific impairments to synaptic integrity remain unclear. To better understand synaptic defects in ALS, we expressed either wild-type or mutant Fused in Sarcoma (FUS), an RNA binding protein that is often mis-localized in ALS, in adult motor neurons. Using optogenetic stimulation of the motor neurons innervating the Ventral Abdominal Muscles (VAMs), we found that expression of mutant FUS disrupted the functional integrity of these synapses. This functional deficit was followed by disruption of synaptic gross morphology, localization of pre- and post-synaptic proteins, and cytoskeleton integrity. We found similar synaptic defects using the motor neurons innervating the Dorsal Longitudinal Muscles (DLMs), where expression of mutant FUS resulted in a progressive loss of flight ability along with disruption of active zone distribution. Our findings uncover defects in synaptic function that precede changes in synaptic structure, suggesting that synaptic function is more sensitive to this ALS model. Highlighting the earliest synaptic defects in this disease model should help to identify strategies for preventing later stages of disease progression.
期刊介绍:
Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include:
the molecular basis of human genetic disease
developmental genetics
cancer genetics
neurogenetics
chromosome and genome structure and function
therapy of genetic disease
stem cells in human genetic disease and therapy, including the application of iPS cells
genome-wide association studies
mouse and other models of human diseases
functional genomics
computational genomics
In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.