{"title":"吲哚衍生物的治疗潜力:分析其在药物发现中的作用。","authors":"Anuradha Mehra, Amit Mittal","doi":"10.1080/10408347.2025.2500611","DOIUrl":null,"url":null,"abstract":"<p><p>Indole was first identified around 1869, this being an indole ring system which is a fused benzene and pyrrole ring system. Research findings illustrate that indole derivatives have gained acceptance as therapeutic agents because they contain structural versatility and access different biological targets. Scientific research has established their strong pharmaceutical properties, especially for oncology medicines because they control essential cellular processes while interrupting defective enzymatic activities of topoisomerases, kinases, and histone deacetylases. Research proves that indole-based compounds display broad antibacterial, antifungal and antiparasitic effects in addition to their cancer-fighting properties. The indole nucleus creates targeted interactions with central nervous system receptors and enzymes for visualization in neurological therapeutic delivery. Research indicates that indole derivatives provide benefits for managing anti-inflammatory responses while lowering blood pressure and diabetes markers although benefiting cardiovascular health through their ability to affect specific disease pathways. The ongoing development of structural optimization methods with synthetic improvements leads to indole compounds which surpass present treatments according to clinical trials. Structural modifications to the indole core system have been explored in recent studies to improve its pharmacological versatility. Research from 2020 to 2024, featuring indole derivatives with their potency, mechanism of action, and strategies to overcome resistance, is highlighted, with a focus on different diseases. Finds from databases such as ScienceDirect, Google Scholar, PubMed, and EMBASE are included in the analysis.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"1-21"},"PeriodicalIF":5.2000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Therapeutic Potential of Indole Derivatives: Analytical Perspectives on Their Role in Drug Discovery.\",\"authors\":\"Anuradha Mehra, Amit Mittal\",\"doi\":\"10.1080/10408347.2025.2500611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Indole was first identified around 1869, this being an indole ring system which is a fused benzene and pyrrole ring system. Research findings illustrate that indole derivatives have gained acceptance as therapeutic agents because they contain structural versatility and access different biological targets. Scientific research has established their strong pharmaceutical properties, especially for oncology medicines because they control essential cellular processes while interrupting defective enzymatic activities of topoisomerases, kinases, and histone deacetylases. Research proves that indole-based compounds display broad antibacterial, antifungal and antiparasitic effects in addition to their cancer-fighting properties. The indole nucleus creates targeted interactions with central nervous system receptors and enzymes for visualization in neurological therapeutic delivery. Research indicates that indole derivatives provide benefits for managing anti-inflammatory responses while lowering blood pressure and diabetes markers although benefiting cardiovascular health through their ability to affect specific disease pathways. The ongoing development of structural optimization methods with synthetic improvements leads to indole compounds which surpass present treatments according to clinical trials. Structural modifications to the indole core system have been explored in recent studies to improve its pharmacological versatility. Research from 2020 to 2024, featuring indole derivatives with their potency, mechanism of action, and strategies to overcome resistance, is highlighted, with a focus on different diseases. Finds from databases such as ScienceDirect, Google Scholar, PubMed, and EMBASE are included in the analysis.</p>\",\"PeriodicalId\":10744,\"journal\":{\"name\":\"Critical reviews in analytical chemistry\",\"volume\":\" \",\"pages\":\"1-21\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical reviews in analytical chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/10408347.2025.2500611\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in analytical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/10408347.2025.2500611","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Therapeutic Potential of Indole Derivatives: Analytical Perspectives on Their Role in Drug Discovery.
Indole was first identified around 1869, this being an indole ring system which is a fused benzene and pyrrole ring system. Research findings illustrate that indole derivatives have gained acceptance as therapeutic agents because they contain structural versatility and access different biological targets. Scientific research has established their strong pharmaceutical properties, especially for oncology medicines because they control essential cellular processes while interrupting defective enzymatic activities of topoisomerases, kinases, and histone deacetylases. Research proves that indole-based compounds display broad antibacterial, antifungal and antiparasitic effects in addition to their cancer-fighting properties. The indole nucleus creates targeted interactions with central nervous system receptors and enzymes for visualization in neurological therapeutic delivery. Research indicates that indole derivatives provide benefits for managing anti-inflammatory responses while lowering blood pressure and diabetes markers although benefiting cardiovascular health through their ability to affect specific disease pathways. The ongoing development of structural optimization methods with synthetic improvements leads to indole compounds which surpass present treatments according to clinical trials. Structural modifications to the indole core system have been explored in recent studies to improve its pharmacological versatility. Research from 2020 to 2024, featuring indole derivatives with their potency, mechanism of action, and strategies to overcome resistance, is highlighted, with a focus on different diseases. Finds from databases such as ScienceDirect, Google Scholar, PubMed, and EMBASE are included in the analysis.
期刊介绍:
Critical Reviews in Analytical Chemistry continues to be a dependable resource for both the expert and the student by providing in-depth, scholarly, insightful reviews of important topics within the discipline of analytical chemistry and related measurement sciences. The journal exclusively publishes review articles that illuminate the underlying science, that evaluate the field''s status by putting recent developments into proper perspective and context, and that speculate on possible future developments. A limited number of articles are of a "tutorial" format written by experts for scientists seeking introduction or clarification in a new area.
This journal serves as a forum for linking various underlying components in broad and interdisciplinary means, while maintaining balance between applied and fundamental research. Topics we are interested in receiving reviews on are the following:
· chemical analysis;
· instrumentation;
· chemometrics;
· analytical biochemistry;
· medicinal analysis;
· forensics;
· environmental sciences;
· applied physics;
· and material science.