棉花幼苗对NaCl胁迫的生理生化响应及耐盐阈值分析

IF 2.6 4区 生物学 Q2 PLANT SCIENCES
Lupeng Sun, Xin Cai, Dianjun Chen, Yang Cai, Fenghua Zhang
{"title":"棉花幼苗对NaCl胁迫的生理生化响应及耐盐阈值分析","authors":"Lupeng Sun, Xin Cai, Dianjun Chen, Yang Cai, Fenghua Zhang","doi":"10.1071/FP24204","DOIUrl":null,"url":null,"abstract":"<p><p>Soil salinisation is increasing in extent and area, which seriously limits the growth of crops. In this experiment, we investigated the differences in physiological responses and salt (NaCl) tolerance thresholds between salt-tolerant ('Xinluzao 53') and salt-sensitive ('Xinluzao 60') varieties of cotton (Gossypium hirsutum ). Peroxidase activity of 'Xinluzao 53' and 'Xinluzao 60' increased by 29.37% and 59.35%, compared with the control, respectively. Catalase activity of 'Xinluzao 53' and 'Xinluzao 60' was 101.00% and 61.59% higher than that of the control, respectively. Overall increase of malondialdehyde (MDA) content in the leaves of 'Xinluzao 53' was less than 'Xinluzao 60', which was lower in 'Xinluzao 53' than 'Xinluzao 60' under the salt treatments of 8g kg-1 (32.59% lower) and 10g kg-1 (35.27% lower). Net photosynthetic rate (Pn) of 'Xinluzao 60' was reduced by 13.31%, 22.83%, and 21.52% compared to 'Xinluzao 53' at salt concentrations of 2, 8, and 10g kg-1 , respectively. 'Xinluzao 53' protected the cell membrane structure by maintaining higher antioxidant enzyme activities, lower MDA content, and electrolyte leakage under salt stress. Higher SPAD values, chlorophyll fluorescence parameters and photosynthetic rates were further maintained to safeguard normal physiological metabolism and photosynthetic system, higher salt tolerance than 'Xinluzao 60'. The orrelation analysis and quadratic regression equation established an integrated, comprehensive, and reliable screening method for cotton seedling salt tolerance threshold in combination with the actual growth of seedlings. The salt tolerance threshold of salt-tolerant 'Xinluzao 53' seedlings was 10.1g kg-1 , and the salt tolerance threshold of sensitive 'Xinluzao 60' seedlings was 8.5g kg-1 .</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"52 ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physiological and biochemical responses of cotton (<i>Gossypium hirsutum</i>) seedlings to NaCl stress and analysis of salt tolerance thresholds.\",\"authors\":\"Lupeng Sun, Xin Cai, Dianjun Chen, Yang Cai, Fenghua Zhang\",\"doi\":\"10.1071/FP24204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Soil salinisation is increasing in extent and area, which seriously limits the growth of crops. In this experiment, we investigated the differences in physiological responses and salt (NaCl) tolerance thresholds between salt-tolerant ('Xinluzao 53') and salt-sensitive ('Xinluzao 60') varieties of cotton (Gossypium hirsutum ). Peroxidase activity of 'Xinluzao 53' and 'Xinluzao 60' increased by 29.37% and 59.35%, compared with the control, respectively. Catalase activity of 'Xinluzao 53' and 'Xinluzao 60' was 101.00% and 61.59% higher than that of the control, respectively. Overall increase of malondialdehyde (MDA) content in the leaves of 'Xinluzao 53' was less than 'Xinluzao 60', which was lower in 'Xinluzao 53' than 'Xinluzao 60' under the salt treatments of 8g kg-1 (32.59% lower) and 10g kg-1 (35.27% lower). Net photosynthetic rate (Pn) of 'Xinluzao 60' was reduced by 13.31%, 22.83%, and 21.52% compared to 'Xinluzao 53' at salt concentrations of 2, 8, and 10g kg-1 , respectively. 'Xinluzao 53' protected the cell membrane structure by maintaining higher antioxidant enzyme activities, lower MDA content, and electrolyte leakage under salt stress. Higher SPAD values, chlorophyll fluorescence parameters and photosynthetic rates were further maintained to safeguard normal physiological metabolism and photosynthetic system, higher salt tolerance than 'Xinluzao 60'. The orrelation analysis and quadratic regression equation established an integrated, comprehensive, and reliable screening method for cotton seedling salt tolerance threshold in combination with the actual growth of seedlings. The salt tolerance threshold of salt-tolerant 'Xinluzao 53' seedlings was 10.1g kg-1 , and the salt tolerance threshold of sensitive 'Xinluzao 60' seedlings was 8.5g kg-1 .</p>\",\"PeriodicalId\":12483,\"journal\":{\"name\":\"Functional Plant Biology\",\"volume\":\"52 \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1071/FP24204\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP24204","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

土壤盐碱化的程度和面积不断增加,严重限制了农作物的生长。以棉花(Gossypium hirsutum)为材料,研究了耐盐品种“新陆早53”和盐敏感品种“新陆早60”生理反应和耐盐阈值的差异。‘新绿早53’和‘新绿早60’过氧化物酶活性分别比对照提高了29.37%和59.35%。新绿早53和新绿早60的过氧化氢酶活性分别比对照高101.00%和61.59%。在8g kg-1和10g kg-1盐处理下,‘新陆早53’叶片丙二醛(MDA)含量的总体增幅小于‘新陆早60’,低于‘新陆早60’。盐浓度为2、8和10g kg-1时,‘新绿早60’的净光合速率(Pn)分别比‘新绿早53’降低了13.31%、22.83%和21.52%。盐胁迫下,新绿藻53通过维持较高的抗氧化酶活性、较低的丙二醛含量和电解质渗漏来保护细胞膜结构。进一步维持较高的SPAD值、叶绿素荧光参数和光合速率,以保障正常的生理代谢和光合系统,比“新绿早60”具有更高的耐盐性。通过相关分析和二次回归方程,结合幼苗的实际生长情况,建立了一套完整、全面、可靠的棉花幼苗耐盐阈值筛选方法。耐盐的‘新陆早53’幼苗耐盐阈值为10.1g kg-1,敏感的‘新陆早60’幼苗耐盐阈值为8.5g kg-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physiological and biochemical responses of cotton (Gossypium hirsutum) seedlings to NaCl stress and analysis of salt tolerance thresholds.

Soil salinisation is increasing in extent and area, which seriously limits the growth of crops. In this experiment, we investigated the differences in physiological responses and salt (NaCl) tolerance thresholds between salt-tolerant ('Xinluzao 53') and salt-sensitive ('Xinluzao 60') varieties of cotton (Gossypium hirsutum ). Peroxidase activity of 'Xinluzao 53' and 'Xinluzao 60' increased by 29.37% and 59.35%, compared with the control, respectively. Catalase activity of 'Xinluzao 53' and 'Xinluzao 60' was 101.00% and 61.59% higher than that of the control, respectively. Overall increase of malondialdehyde (MDA) content in the leaves of 'Xinluzao 53' was less than 'Xinluzao 60', which was lower in 'Xinluzao 53' than 'Xinluzao 60' under the salt treatments of 8g kg-1 (32.59% lower) and 10g kg-1 (35.27% lower). Net photosynthetic rate (Pn) of 'Xinluzao 60' was reduced by 13.31%, 22.83%, and 21.52% compared to 'Xinluzao 53' at salt concentrations of 2, 8, and 10g kg-1 , respectively. 'Xinluzao 53' protected the cell membrane structure by maintaining higher antioxidant enzyme activities, lower MDA content, and electrolyte leakage under salt stress. Higher SPAD values, chlorophyll fluorescence parameters and photosynthetic rates were further maintained to safeguard normal physiological metabolism and photosynthetic system, higher salt tolerance than 'Xinluzao 60'. The orrelation analysis and quadratic regression equation established an integrated, comprehensive, and reliable screening method for cotton seedling salt tolerance threshold in combination with the actual growth of seedlings. The salt tolerance threshold of salt-tolerant 'Xinluzao 53' seedlings was 10.1g kg-1 , and the salt tolerance threshold of sensitive 'Xinluzao 60' seedlings was 8.5g kg-1 .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Functional Plant Biology
Functional Plant Biology 生物-植物科学
CiteScore
5.50
自引率
3.30%
发文量
156
审稿时长
1 months
期刊介绍: Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance. Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science. Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信