Wenqiang Zhang, Fei Teng, Xifa Lan, Peihui Liu, Aiming Wang, Fan Zhang, Zhiqiang Cui, Jingwei Guan, Xiaohong Sun
{"title":"一项新的发现涉及ATF3/DOCK8参与阿尔茨海默病的发病机制。","authors":"Wenqiang Zhang, Fei Teng, Xifa Lan, Peihui Liu, Aiming Wang, Fan Zhang, Zhiqiang Cui, Jingwei Guan, Xiaohong Sun","doi":"10.1177/13872877251336266","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundThe involvement of microglia is likely to be pivotal in the pathogenesis of Alzheimer's disease (AD) by modulating the deposition of amyloid-β (Aβ) plaques. The deletion of Dedicator of cytokinesis 8 (DOCK8) has a protective effect in mouse with neurodegenerative diseases.ObjectiveTo explore the underlying mechanism of DOCK8 in AD.MethodsIn present study, we first the detected the expression of DOCK8 in the hippocampal tissue of APP/PS1 mice. Then, the expression of DOCK8 was knocked down in the hippocampal tissue of APP/PS1 mice, and the effects of DOCK8 down-regulation on cognitive function, the microglia migration around Aβ plaques, and the cell division cycle 42 (Cdc42)/p38 mitogen-activated protein kinase (MAPK) signaling pathway were detected. Next, the effects of DOCK8 knockdown on Aβ-induced migration and activation of BV-2 cells as well as the MAPK signaling pathway were detected. Finally, the transcriptional regulation of DOCK by transcription factor 3 (ATF3) was detected by a dual luciferase reporter assay.ResultsDOCK8 expression exerts a significant upregulation in the hippocampus of APP/PS1 mice. However, following the DOCK8 knockdown, there was a significant recovery in the results of the behavioral tests and a notable reduction in microglial expression. Moreover, the high expression of DOCK8 mediated by ATF3 successfully triggered the Cdc42/p38 MAPK signaling pathway, thereby enhancing the migration and recruitment of microglia towards senile plaques, accelerating the production of Aβ plaques.ConclusionsATF3-mediated high expression of DOCK8 accelerates the production of Aβ plaques, and participates in the pathogenesis of AD.</p>","PeriodicalId":14929,"journal":{"name":"Journal of Alzheimer's Disease","volume":" ","pages":"13872877251336266"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel finding relates to the involvement of ATF3/DOCK8 in Alzheimer's disease pathogenesis.\",\"authors\":\"Wenqiang Zhang, Fei Teng, Xifa Lan, Peihui Liu, Aiming Wang, Fan Zhang, Zhiqiang Cui, Jingwei Guan, Xiaohong Sun\",\"doi\":\"10.1177/13872877251336266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>BackgroundThe involvement of microglia is likely to be pivotal in the pathogenesis of Alzheimer's disease (AD) by modulating the deposition of amyloid-β (Aβ) plaques. The deletion of Dedicator of cytokinesis 8 (DOCK8) has a protective effect in mouse with neurodegenerative diseases.ObjectiveTo explore the underlying mechanism of DOCK8 in AD.MethodsIn present study, we first the detected the expression of DOCK8 in the hippocampal tissue of APP/PS1 mice. Then, the expression of DOCK8 was knocked down in the hippocampal tissue of APP/PS1 mice, and the effects of DOCK8 down-regulation on cognitive function, the microglia migration around Aβ plaques, and the cell division cycle 42 (Cdc42)/p38 mitogen-activated protein kinase (MAPK) signaling pathway were detected. Next, the effects of DOCK8 knockdown on Aβ-induced migration and activation of BV-2 cells as well as the MAPK signaling pathway were detected. Finally, the transcriptional regulation of DOCK by transcription factor 3 (ATF3) was detected by a dual luciferase reporter assay.ResultsDOCK8 expression exerts a significant upregulation in the hippocampus of APP/PS1 mice. However, following the DOCK8 knockdown, there was a significant recovery in the results of the behavioral tests and a notable reduction in microglial expression. Moreover, the high expression of DOCK8 mediated by ATF3 successfully triggered the Cdc42/p38 MAPK signaling pathway, thereby enhancing the migration and recruitment of microglia towards senile plaques, accelerating the production of Aβ plaques.ConclusionsATF3-mediated high expression of DOCK8 accelerates the production of Aβ plaques, and participates in the pathogenesis of AD.</p>\",\"PeriodicalId\":14929,\"journal\":{\"name\":\"Journal of Alzheimer's Disease\",\"volume\":\" \",\"pages\":\"13872877251336266\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alzheimer's Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/13872877251336266\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alzheimer's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/13872877251336266","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
A novel finding relates to the involvement of ATF3/DOCK8 in Alzheimer's disease pathogenesis.
BackgroundThe involvement of microglia is likely to be pivotal in the pathogenesis of Alzheimer's disease (AD) by modulating the deposition of amyloid-β (Aβ) plaques. The deletion of Dedicator of cytokinesis 8 (DOCK8) has a protective effect in mouse with neurodegenerative diseases.ObjectiveTo explore the underlying mechanism of DOCK8 in AD.MethodsIn present study, we first the detected the expression of DOCK8 in the hippocampal tissue of APP/PS1 mice. Then, the expression of DOCK8 was knocked down in the hippocampal tissue of APP/PS1 mice, and the effects of DOCK8 down-regulation on cognitive function, the microglia migration around Aβ plaques, and the cell division cycle 42 (Cdc42)/p38 mitogen-activated protein kinase (MAPK) signaling pathway were detected. Next, the effects of DOCK8 knockdown on Aβ-induced migration and activation of BV-2 cells as well as the MAPK signaling pathway were detected. Finally, the transcriptional regulation of DOCK by transcription factor 3 (ATF3) was detected by a dual luciferase reporter assay.ResultsDOCK8 expression exerts a significant upregulation in the hippocampus of APP/PS1 mice. However, following the DOCK8 knockdown, there was a significant recovery in the results of the behavioral tests and a notable reduction in microglial expression. Moreover, the high expression of DOCK8 mediated by ATF3 successfully triggered the Cdc42/p38 MAPK signaling pathway, thereby enhancing the migration and recruitment of microglia towards senile plaques, accelerating the production of Aβ plaques.ConclusionsATF3-mediated high expression of DOCK8 accelerates the production of Aβ plaques, and participates in the pathogenesis of AD.
期刊介绍:
The Journal of Alzheimer''s Disease (JAD) is an international multidisciplinary journal to facilitate progress in understanding the etiology, pathogenesis, epidemiology, genetics, behavior, treatment and psychology of Alzheimer''s disease. The journal publishes research reports, reviews, short communications, hypotheses, ethics reviews, book reviews, and letters-to-the-editor. The journal is dedicated to providing an open forum for original research that will expedite our fundamental understanding of Alzheimer''s disease.