Yi Wang, Feng Li, Mengge Lv, Tianzhen Wang, Xiaohang Wang
{"title":"水轮机空化检测的多指标融合自适应空化特征提取。","authors":"Yi Wang, Feng Li, Mengge Lv, Tianzhen Wang, Xiaohang Wang","doi":"10.3390/e27040443","DOIUrl":null,"url":null,"abstract":"<p><p>Under cavitation conditions, hydraulic turbines can suffer from mechanical damage, which will shorten their useful life and reduce power generation efficiency. Timely detection of cavitation phenomena in hydraulic turbines is critical for ensuring operational reliability and maintaining energy conversion efficiency. However, extracting cavitation features is challenging due to strong environmental noise interference and the inherent non-linearity and non-stationarity of a cavitation hydroacoustic signal. A multi-index fusion adaptive cavitation feature extraction and cavitation detection method is proposed to solve the above problems. The number of decomposition layers in the multi-index fusion variational mode decomposition (VMD) algorithm is adaptively determined by fusing multiple indicators related to cavitation characteristics, thus retaining more cavitation information and improving the quality of cavitation feature extraction. Then, the cavitation features are selected based on the frequency characteristics of different degrees of cavitation. In this way, the detection of incipient cavitation and the secondary detection of supercavitation are realized. Finally, the cavitation detection effect was verified using the hydro-acoustic signal collected from a mixed-flow hydro turbine model test stand. The detection accuracy rate and false alarm rate were used as evaluation indicators, and the comparison results showed that the proposed method has high detection accuracy and a low false alarm rate.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12027118/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Multi-Index Fusion Adaptive Cavitation Feature Extraction for Hydraulic Turbine Cavitation Detection.\",\"authors\":\"Yi Wang, Feng Li, Mengge Lv, Tianzhen Wang, Xiaohang Wang\",\"doi\":\"10.3390/e27040443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Under cavitation conditions, hydraulic turbines can suffer from mechanical damage, which will shorten their useful life and reduce power generation efficiency. Timely detection of cavitation phenomena in hydraulic turbines is critical for ensuring operational reliability and maintaining energy conversion efficiency. However, extracting cavitation features is challenging due to strong environmental noise interference and the inherent non-linearity and non-stationarity of a cavitation hydroacoustic signal. A multi-index fusion adaptive cavitation feature extraction and cavitation detection method is proposed to solve the above problems. The number of decomposition layers in the multi-index fusion variational mode decomposition (VMD) algorithm is adaptively determined by fusing multiple indicators related to cavitation characteristics, thus retaining more cavitation information and improving the quality of cavitation feature extraction. Then, the cavitation features are selected based on the frequency characteristics of different degrees of cavitation. In this way, the detection of incipient cavitation and the secondary detection of supercavitation are realized. Finally, the cavitation detection effect was verified using the hydro-acoustic signal collected from a mixed-flow hydro turbine model test stand. The detection accuracy rate and false alarm rate were used as evaluation indicators, and the comparison results showed that the proposed method has high detection accuracy and a low false alarm rate.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12027118/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27040443\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040443","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
A Multi-Index Fusion Adaptive Cavitation Feature Extraction for Hydraulic Turbine Cavitation Detection.
Under cavitation conditions, hydraulic turbines can suffer from mechanical damage, which will shorten their useful life and reduce power generation efficiency. Timely detection of cavitation phenomena in hydraulic turbines is critical for ensuring operational reliability and maintaining energy conversion efficiency. However, extracting cavitation features is challenging due to strong environmental noise interference and the inherent non-linearity and non-stationarity of a cavitation hydroacoustic signal. A multi-index fusion adaptive cavitation feature extraction and cavitation detection method is proposed to solve the above problems. The number of decomposition layers in the multi-index fusion variational mode decomposition (VMD) algorithm is adaptively determined by fusing multiple indicators related to cavitation characteristics, thus retaining more cavitation information and improving the quality of cavitation feature extraction. Then, the cavitation features are selected based on the frequency characteristics of different degrees of cavitation. In this way, the detection of incipient cavitation and the secondary detection of supercavitation are realized. Finally, the cavitation detection effect was verified using the hydro-acoustic signal collected from a mixed-flow hydro turbine model test stand. The detection accuracy rate and false alarm rate were used as evaluation indicators, and the comparison results showed that the proposed method has high detection accuracy and a low false alarm rate.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.