抑制cd45特异性磷酸酶活性恢复衰老间充质间质细胞的分化潜能:在再生医学中的意义

IF 4.6 2区 生物学 Q1 BIOLOGY
Madhurima Das, Isha Behere, Ganesh Ingavle, Anuradha Vaidya, Vaijayanti Prakash Kale
{"title":"抑制cd45特异性磷酸酶活性恢复衰老间充质间质细胞的分化潜能:在再生医学中的意义","authors":"Madhurima Das, Isha Behere, Ganesh Ingavle, Anuradha Vaidya, Vaijayanti Prakash Kale","doi":"10.1186/s40659-025-00603-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Aging affects the reparative potency of mesenchymal stem/stromal cells (MSCs) by diminishing their proliferation and differentiation capability; making them unsuitable for regenerative purposes. Earlier we showed that MSCs acquire the expression of CD45 as a consequence of aging, and this increased expression is associated with downregulated expression of osteogenic markers and upregulated expression of adipogenic and osteoclastogenic markers. However, whether CD45 is actively involved in the aging-mediated deregulated differentiation in the MSCs was not elucidated.</p><p><strong>Results: </strong>In the present study, we showed that pharmacological inhibition of CD45-specific phosphatase activity in the aged MSCs restores their differentiation potential to young-like. Investigation of the molecular mechanism involved in the process showed that several regulatory kinases like p38, p44/42, Src, and GSK3β are in their dephosphorylated form in the aged MSCs, and importantly, this status gets reversed by the application of a CD45-specific PTP inhibitor. Conversely, pharmacological inhibition of these kinases in young MSCs imposes an aged-like gene expression profile on them. Additionally, we also showed that the secretome of aged MSCs affects the viability and differentiation of primary chondrocytes, and this detrimental effect is reversed by treating aged MSCs with the PTP inhibitor. Our data demonstrate that the aging-mediated expression of CD45 in MSCs alters their differentiation profile by dephosphorylating several kinases and treating the aged MSCs with a CD45 PTP activity inhibitor rejuvenates them.</p><p><strong>Conclusions: </strong>CD45 can be used as an aging marker for mesenchymal stem cells. Alteration of CD45 phosphatase activity could have significant implications for the use of MSCs in regenerative medicine.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"58 1","pages":"24"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12046811/pdf/","citationCount":"0","resultStr":"{\"title\":\"Inhibition of CD45-specific phosphatase activity restores the differentiation potential of aged mesenchymal stromal cells: implications in regenerative medicine.\",\"authors\":\"Madhurima Das, Isha Behere, Ganesh Ingavle, Anuradha Vaidya, Vaijayanti Prakash Kale\",\"doi\":\"10.1186/s40659-025-00603-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Aging affects the reparative potency of mesenchymal stem/stromal cells (MSCs) by diminishing their proliferation and differentiation capability; making them unsuitable for regenerative purposes. Earlier we showed that MSCs acquire the expression of CD45 as a consequence of aging, and this increased expression is associated with downregulated expression of osteogenic markers and upregulated expression of adipogenic and osteoclastogenic markers. However, whether CD45 is actively involved in the aging-mediated deregulated differentiation in the MSCs was not elucidated.</p><p><strong>Results: </strong>In the present study, we showed that pharmacological inhibition of CD45-specific phosphatase activity in the aged MSCs restores their differentiation potential to young-like. Investigation of the molecular mechanism involved in the process showed that several regulatory kinases like p38, p44/42, Src, and GSK3β are in their dephosphorylated form in the aged MSCs, and importantly, this status gets reversed by the application of a CD45-specific PTP inhibitor. Conversely, pharmacological inhibition of these kinases in young MSCs imposes an aged-like gene expression profile on them. Additionally, we also showed that the secretome of aged MSCs affects the viability and differentiation of primary chondrocytes, and this detrimental effect is reversed by treating aged MSCs with the PTP inhibitor. Our data demonstrate that the aging-mediated expression of CD45 in MSCs alters their differentiation profile by dephosphorylating several kinases and treating the aged MSCs with a CD45 PTP activity inhibitor rejuvenates them.</p><p><strong>Conclusions: </strong>CD45 can be used as an aging marker for mesenchymal stem cells. Alteration of CD45 phosphatase activity could have significant implications for the use of MSCs in regenerative medicine.</p>\",\"PeriodicalId\":9084,\"journal\":{\"name\":\"Biological Research\",\"volume\":\"58 1\",\"pages\":\"24\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12046811/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40659-025-00603-8\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40659-025-00603-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:衰老通过降低间充质干细胞(MSCs)的增殖和分化能力来影响其修复能力;使它们不适合用于再生目的。早期我们发现MSCs随着年龄的增长而获得CD45的表达,并且这种表达的增加与成骨标志物的表达下调以及脂肪生成和破骨细胞标志物的表达上调有关。然而,CD45是否积极参与MSCs中衰老介导的去调控分化尚不清楚。结果:在本研究中,我们发现药物抑制衰老MSCs的cd45特异性磷酸酶活性可以恢复其向年轻样分化的潜力。对参与这一过程的分子机制的研究表明,p38、p44/42、Src和GSK3β等几种调节激酶在衰老的MSCs中处于去磷酸化形式,重要的是,这种状态通过应用cd45特异性PTP抑制剂得到逆转。相反,在年轻间充质干细胞中,这些激酶的药理学抑制会在它们身上施加类似衰老的基因表达谱。此外,我们还发现衰老MSCs的分泌组会影响原代软骨细胞的活力和分化,而用PTP抑制剂治疗衰老MSCs可以逆转这种不利影响。我们的数据表明,衰老介导的MSCs中CD45的表达通过去磷酸化几个激酶和用CD45 PTP活性抑制剂治疗衰老的MSCs使它们恢复活力来改变它们的分化谱。结论:CD45可作为间充质干细胞的衰老标志物。CD45磷酸酶活性的改变可能对MSCs在再生医学中的应用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inhibition of CD45-specific phosphatase activity restores the differentiation potential of aged mesenchymal stromal cells: implications in regenerative medicine.

Background: Aging affects the reparative potency of mesenchymal stem/stromal cells (MSCs) by diminishing their proliferation and differentiation capability; making them unsuitable for regenerative purposes. Earlier we showed that MSCs acquire the expression of CD45 as a consequence of aging, and this increased expression is associated with downregulated expression of osteogenic markers and upregulated expression of adipogenic and osteoclastogenic markers. However, whether CD45 is actively involved in the aging-mediated deregulated differentiation in the MSCs was not elucidated.

Results: In the present study, we showed that pharmacological inhibition of CD45-specific phosphatase activity in the aged MSCs restores their differentiation potential to young-like. Investigation of the molecular mechanism involved in the process showed that several regulatory kinases like p38, p44/42, Src, and GSK3β are in their dephosphorylated form in the aged MSCs, and importantly, this status gets reversed by the application of a CD45-specific PTP inhibitor. Conversely, pharmacological inhibition of these kinases in young MSCs imposes an aged-like gene expression profile on them. Additionally, we also showed that the secretome of aged MSCs affects the viability and differentiation of primary chondrocytes, and this detrimental effect is reversed by treating aged MSCs with the PTP inhibitor. Our data demonstrate that the aging-mediated expression of CD45 in MSCs alters their differentiation profile by dephosphorylating several kinases and treating the aged MSCs with a CD45 PTP activity inhibitor rejuvenates them.

Conclusions: CD45 can be used as an aging marker for mesenchymal stem cells. Alteration of CD45 phosphatase activity could have significant implications for the use of MSCs in regenerative medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Research
Biological Research 生物-生物学
CiteScore
10.10
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: Biological Research is an open access, peer-reviewed journal that encompasses diverse fields of experimental biology, such as biochemistry, bioinformatics, biotechnology, cell biology, cancer, chemical biology, developmental biology, evolutionary biology, genetics, genomics, immunology, marine biology, microbiology, molecular biology, neuroscience, plant biology, physiology, stem cell research, structural biology and systems biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信