Cisen Xiao, Changlin Song, Junmin Li, Min Liao, Yongfan Pu, Kun Du
{"title":"基于改进YOLOv5n-ByteTrack的马铃薯精密播种机计量系统。","authors":"Cisen Xiao, Changlin Song, Junmin Li, Min Liao, Yongfan Pu, Kun Du","doi":"10.3389/fpls.2025.1563551","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate assessment of the planting effect is crucial during the potato cultivation process. Currently, manual statistical methods are inefficient and challenging to evaluate in real-time. To address this issue, this study proposes a detection algorithm for the potato planting machine's seed potato scooping scene, based on an improved lightweight YOLO v5n model. Initially, the C3-Faster module is introduced, which reduces the number of parameters and computational load while maintaining detection accuracy. Subsequently, re-parameterized convolution (RepConv) is incorporated into the feature extraction network architecture, enhancing the model's inference speed by leveraging the correlation between features. Finally, to further improve the efficiency of the model for mobile applications, layer-adaptive magnitude-based pruning (LAMP) technology is employed to eliminate redundant channels with minimal impact on performance. The experimental results indicate that: 1) The improved YOLOv5n model exhibits a 56.8% reduction in parameters, a 56.1% decrease in giga floating point operations per second (GFLOPs), a 51.4% reduction in model size, and a 37.0% reduction in Embedded Device Inference Time compared to the YOLOv5n model. Additionally, the mean average precision (mAP) at mAP@0.5 achieves up to 98.0%. 2) Compared with the YOLO series model, mAP@0.5 is close, and the parameters, GFLOPs, and model size are significantly decreased. 3) Combining the ByteTrack algorithm and counting method, the accuracy of counting reaches 96.6%. Based on these improvements, we designed a potato precision planter metering system that supports real-time monitoring of omission, replanting, and qualified casting during the planting process. This system provides effective support for potato precision planting and offers a visual representation of the planting outcomes, demonstrating its practical value for the industry.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1563551"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12066531/pdf/","citationCount":"0","resultStr":"{\"title\":\"Potato precision planter metering system based on improved YOLOv5n-ByteTrack.\",\"authors\":\"Cisen Xiao, Changlin Song, Junmin Li, Min Liao, Yongfan Pu, Kun Du\",\"doi\":\"10.3389/fpls.2025.1563551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate assessment of the planting effect is crucial during the potato cultivation process. Currently, manual statistical methods are inefficient and challenging to evaluate in real-time. To address this issue, this study proposes a detection algorithm for the potato planting machine's seed potato scooping scene, based on an improved lightweight YOLO v5n model. Initially, the C3-Faster module is introduced, which reduces the number of parameters and computational load while maintaining detection accuracy. Subsequently, re-parameterized convolution (RepConv) is incorporated into the feature extraction network architecture, enhancing the model's inference speed by leveraging the correlation between features. Finally, to further improve the efficiency of the model for mobile applications, layer-adaptive magnitude-based pruning (LAMP) technology is employed to eliminate redundant channels with minimal impact on performance. The experimental results indicate that: 1) The improved YOLOv5n model exhibits a 56.8% reduction in parameters, a 56.1% decrease in giga floating point operations per second (GFLOPs), a 51.4% reduction in model size, and a 37.0% reduction in Embedded Device Inference Time compared to the YOLOv5n model. Additionally, the mean average precision (mAP) at mAP@0.5 achieves up to 98.0%. 2) Compared with the YOLO series model, mAP@0.5 is close, and the parameters, GFLOPs, and model size are significantly decreased. 3) Combining the ByteTrack algorithm and counting method, the accuracy of counting reaches 96.6%. Based on these improvements, we designed a potato precision planter metering system that supports real-time monitoring of omission, replanting, and qualified casting during the planting process. This system provides effective support for potato precision planting and offers a visual representation of the planting outcomes, demonstrating its practical value for the industry.</p>\",\"PeriodicalId\":12632,\"journal\":{\"name\":\"Frontiers in Plant Science\",\"volume\":\"16 \",\"pages\":\"1563551\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12066531/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fpls.2025.1563551\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1563551","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Potato precision planter metering system based on improved YOLOv5n-ByteTrack.
Accurate assessment of the planting effect is crucial during the potato cultivation process. Currently, manual statistical methods are inefficient and challenging to evaluate in real-time. To address this issue, this study proposes a detection algorithm for the potato planting machine's seed potato scooping scene, based on an improved lightweight YOLO v5n model. Initially, the C3-Faster module is introduced, which reduces the number of parameters and computational load while maintaining detection accuracy. Subsequently, re-parameterized convolution (RepConv) is incorporated into the feature extraction network architecture, enhancing the model's inference speed by leveraging the correlation between features. Finally, to further improve the efficiency of the model for mobile applications, layer-adaptive magnitude-based pruning (LAMP) technology is employed to eliminate redundant channels with minimal impact on performance. The experimental results indicate that: 1) The improved YOLOv5n model exhibits a 56.8% reduction in parameters, a 56.1% decrease in giga floating point operations per second (GFLOPs), a 51.4% reduction in model size, and a 37.0% reduction in Embedded Device Inference Time compared to the YOLOv5n model. Additionally, the mean average precision (mAP) at mAP@0.5 achieves up to 98.0%. 2) Compared with the YOLO series model, mAP@0.5 is close, and the parameters, GFLOPs, and model size are significantly decreased. 3) Combining the ByteTrack algorithm and counting method, the accuracy of counting reaches 96.6%. Based on these improvements, we designed a potato precision planter metering system that supports real-time monitoring of omission, replanting, and qualified casting during the planting process. This system provides effective support for potato precision planting and offers a visual representation of the planting outcomes, demonstrating its practical value for the industry.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.