Hongxu Chen, Denglan Wang, Juanjuan Shen, Baoyan Guo, Chun Song, Duo Ma, Yan Wu, Guohui Liu, Guangxue Chen, Yan Ni, Tiantian Kong, Fan Wang
{"title":"使用弹性网回归和机器学习预测围产期抑郁:残余胆固醇的作用。","authors":"Hongxu Chen, Denglan Wang, Juanjuan Shen, Baoyan Guo, Chun Song, Duo Ma, Yan Wu, Guohui Liu, Guangxue Chen, Yan Ni, Tiantian Kong, Fan Wang","doi":"10.1186/s12884-025-07656-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Traditional statistical methods have dominated research on peripartum depression (PPD), but innovative approaches may provide deeper insights. This study aims to predict the impact factors of PPD using elastic net regression (ENR) combined with machine learning (ML) model.</p><p><strong>Methods: </strong>This longitudinal study was conducted from June 2020 to May 2023, involving healthy pregnant women in the first trimester, followed up until the completion of the assessment in the second trimester. PPD symptoms were assessed using the Edinburgh Postnatal Depression Scale (EPDS). Features with p <.05 from logistic regression were selected and refined using ENR. These features were then used to build six ML models to identify the best-performing one. SHapley Additive exPlanations (SHAP) analysis was employed to enhance model interpretability by visualizing its decision-making process.</p><p><strong>Results: </strong>A total of 608 participants were followed, resulting in 384 valid questionnaires. After excluding incomplete or incorrect baseline data, 325 participants were ultimately included in the study. Among these, 130 were classified as having mild depression, and 32 were classified with major depression. Nineteen features were initially identified as being associated with PPD, with 14 retained after ENR refinement. The random forest (RF) model outperformed the other ML models. SHAP analysis identified the top five predictors of PPD: magnesium (Mg), remnant cholesterol (RC), calcium (Ca), mean corpuscular hemoglobin concentration (MCHc), and potassium (K). Mg, Ca, MCHc, and K were negatively correlated with PPD, while RC showed a positive correlation.</p><p><strong>Conclusions: </strong>The RF model effectively identified associations between exposure factors and PPD. Mg, Ca, MCHc, and K were found to be protective factors, while RC emerged as a potential risk factor, highlighting its potential as a novel biomarker for PPD.</p>","PeriodicalId":9033,"journal":{"name":"BMC Pregnancy and Childbirth","volume":"25 1","pages":"544"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12060319/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting peripartum depression using elastic net regression and machine learning: the role of remnant cholesterol.\",\"authors\":\"Hongxu Chen, Denglan Wang, Juanjuan Shen, Baoyan Guo, Chun Song, Duo Ma, Yan Wu, Guohui Liu, Guangxue Chen, Yan Ni, Tiantian Kong, Fan Wang\",\"doi\":\"10.1186/s12884-025-07656-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Traditional statistical methods have dominated research on peripartum depression (PPD), but innovative approaches may provide deeper insights. This study aims to predict the impact factors of PPD using elastic net regression (ENR) combined with machine learning (ML) model.</p><p><strong>Methods: </strong>This longitudinal study was conducted from June 2020 to May 2023, involving healthy pregnant women in the first trimester, followed up until the completion of the assessment in the second trimester. PPD symptoms were assessed using the Edinburgh Postnatal Depression Scale (EPDS). Features with p <.05 from logistic regression were selected and refined using ENR. These features were then used to build six ML models to identify the best-performing one. SHapley Additive exPlanations (SHAP) analysis was employed to enhance model interpretability by visualizing its decision-making process.</p><p><strong>Results: </strong>A total of 608 participants were followed, resulting in 384 valid questionnaires. After excluding incomplete or incorrect baseline data, 325 participants were ultimately included in the study. Among these, 130 were classified as having mild depression, and 32 were classified with major depression. Nineteen features were initially identified as being associated with PPD, with 14 retained after ENR refinement. The random forest (RF) model outperformed the other ML models. SHAP analysis identified the top five predictors of PPD: magnesium (Mg), remnant cholesterol (RC), calcium (Ca), mean corpuscular hemoglobin concentration (MCHc), and potassium (K). Mg, Ca, MCHc, and K were negatively correlated with PPD, while RC showed a positive correlation.</p><p><strong>Conclusions: </strong>The RF model effectively identified associations between exposure factors and PPD. Mg, Ca, MCHc, and K were found to be protective factors, while RC emerged as a potential risk factor, highlighting its potential as a novel biomarker for PPD.</p>\",\"PeriodicalId\":9033,\"journal\":{\"name\":\"BMC Pregnancy and Childbirth\",\"volume\":\"25 1\",\"pages\":\"544\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12060319/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Pregnancy and Childbirth\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12884-025-07656-3\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OBSTETRICS & GYNECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Pregnancy and Childbirth","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12884-025-07656-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
Predicting peripartum depression using elastic net regression and machine learning: the role of remnant cholesterol.
Background: Traditional statistical methods have dominated research on peripartum depression (PPD), but innovative approaches may provide deeper insights. This study aims to predict the impact factors of PPD using elastic net regression (ENR) combined with machine learning (ML) model.
Methods: This longitudinal study was conducted from June 2020 to May 2023, involving healthy pregnant women in the first trimester, followed up until the completion of the assessment in the second trimester. PPD symptoms were assessed using the Edinburgh Postnatal Depression Scale (EPDS). Features with p <.05 from logistic regression were selected and refined using ENR. These features were then used to build six ML models to identify the best-performing one. SHapley Additive exPlanations (SHAP) analysis was employed to enhance model interpretability by visualizing its decision-making process.
Results: A total of 608 participants were followed, resulting in 384 valid questionnaires. After excluding incomplete or incorrect baseline data, 325 participants were ultimately included in the study. Among these, 130 were classified as having mild depression, and 32 were classified with major depression. Nineteen features were initially identified as being associated with PPD, with 14 retained after ENR refinement. The random forest (RF) model outperformed the other ML models. SHAP analysis identified the top five predictors of PPD: magnesium (Mg), remnant cholesterol (RC), calcium (Ca), mean corpuscular hemoglobin concentration (MCHc), and potassium (K). Mg, Ca, MCHc, and K were negatively correlated with PPD, while RC showed a positive correlation.
Conclusions: The RF model effectively identified associations between exposure factors and PPD. Mg, Ca, MCHc, and K were found to be protective factors, while RC emerged as a potential risk factor, highlighting its potential as a novel biomarker for PPD.
期刊介绍:
BMC Pregnancy & Childbirth is an open access, peer-reviewed journal that considers articles on all aspects of pregnancy and childbirth. The journal welcomes submissions on the biomedical aspects of pregnancy, breastfeeding, labor, maternal health, maternity care, trends and sociological aspects of pregnancy and childbirth.