{"title":"从类器官到集合体:研究人类神经精神疾病的实验方法。","authors":"Rebecca J Levy, Sergiu P Paşca","doi":"10.1146/annurev-neuro-112723-023232","DOIUrl":null,"url":null,"abstract":"<p><p>To understand the pathophysiology and develop effective therapeutics for brain disorders, some of which may involve uniquely human features of the nervous system, scalable human models of neural cell diversity and circuit formation are essential. The discovery of cell reprogramming and the development of approaches for generating stem cell-derived neurons and glial cells in 3D preparations known as neural organoids and assembloids, both in vitro and following transplantation in vivo, provide new opportunities to tackle these challenges. Here, we outline strengths and limitations of currently available human experimental models as applied to neurological and psychiatric disorders for both environmental and genetic risk factors, and we discuss how these new tools hold promise for accelerating the development of therapeutics.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Organoids to Assembloids: Experimental Approaches to Study Human Neuropsychiatric Disorders.\",\"authors\":\"Rebecca J Levy, Sergiu P Paşca\",\"doi\":\"10.1146/annurev-neuro-112723-023232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To understand the pathophysiology and develop effective therapeutics for brain disorders, some of which may involve uniquely human features of the nervous system, scalable human models of neural cell diversity and circuit formation are essential. The discovery of cell reprogramming and the development of approaches for generating stem cell-derived neurons and glial cells in 3D preparations known as neural organoids and assembloids, both in vitro and following transplantation in vivo, provide new opportunities to tackle these challenges. Here, we outline strengths and limitations of currently available human experimental models as applied to neurological and psychiatric disorders for both environmental and genetic risk factors, and we discuss how these new tools hold promise for accelerating the development of therapeutics.</p>\",\"PeriodicalId\":8008,\"journal\":{\"name\":\"Annual review of neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-neuro-112723-023232\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-neuro-112723-023232","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
From Organoids to Assembloids: Experimental Approaches to Study Human Neuropsychiatric Disorders.
To understand the pathophysiology and develop effective therapeutics for brain disorders, some of which may involve uniquely human features of the nervous system, scalable human models of neural cell diversity and circuit formation are essential. The discovery of cell reprogramming and the development of approaches for generating stem cell-derived neurons and glial cells in 3D preparations known as neural organoids and assembloids, both in vitro and following transplantation in vivo, provide new opportunities to tackle these challenges. Here, we outline strengths and limitations of currently available human experimental models as applied to neurological and psychiatric disorders for both environmental and genetic risk factors, and we discuss how these new tools hold promise for accelerating the development of therapeutics.
期刊介绍:
The Annual Review of Neuroscience is a well-established and comprehensive journal in the field of neuroscience, with a rich history and a commitment to open access and scholarly communication. The journal has been in publication since 1978, providing a long-standing source of authoritative reviews in neuroscience.
The Annual Review of Neuroscience encompasses a wide range of topics within neuroscience, including but not limited to: Molecular and cellular neuroscience, Neurogenetics, Developmental neuroscience, Neural plasticity and repair, Systems neuroscience, Cognitive neuroscience, Behavioral neuroscience, Neurobiology of disease. Occasionally, the journal also features reviews on the history of neuroscience and ethical considerations within the field.