基于知识蒸馏和低秩分解的轻量级预训练韩语模型。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-04-02 DOI:10.3390/e27040379
Jin-Hwan Kim, Young-Seok Choi
{"title":"基于知识蒸馏和低秩分解的轻量级预训练韩语模型。","authors":"Jin-Hwan Kim, Young-Seok Choi","doi":"10.3390/e27040379","DOIUrl":null,"url":null,"abstract":"<p><p>Natural Language Processing (NLP) stands as a forefront of artificial intelligence research, empowering computational systems to comprehend and process human language as used in everyday contexts. Language models (LMs) underpin this field, striving to capture the intricacies of linguistic structure and semantics by assigning probabilities to sequences of words. The trend towards large language models (LLMs) has shown significant performance improvements with increasing model size. However, the deployment of LLMs on resource-limited devices such as mobile and edge devices remains a challenge. This issue is particularly pronounced in languages other than English, including Korean, where pre-trained models are relatively scarce. Addressing this gap, we introduce a novel lightweight pre-trained Korean language model that leverages knowledge distillation and low-rank factorization techniques. Our approach distills knowledge from a 432 MB (approximately 110 M parameters) teacher model into student models of substantially reduced sizes (e.g., 53 MB ≈ 14 M parameters, 35 MB ≈ 13 M parameters, 30 MB ≈ 11 M parameters, and 18 MB ≈ 4 M parameters). The smaller student models further employ low-rank factorization to minimize the parameter count within the Transformer's feed-forward network (FFN) and embedding layer. We evaluate the efficacy of our lightweight model across six established Korean NLP tasks. Notably, our most compact model, KR-ELECTRA-Small-KD, attains over 97.387% of the teacher model's performance despite an 8.15× reduction in size. Remarkably, on the NSMC sentiment classification benchmark, KR-ELECTRA-Small-KD surpasses the teacher model with an accuracy of 89.720%. These findings underscore the potential of our model as an efficient solution for NLP applications in resource-constrained settings.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026428/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lightweight Pre-Trained Korean Language Model Based on Knowledge Distillation and Low-Rank Factorization.\",\"authors\":\"Jin-Hwan Kim, Young-Seok Choi\",\"doi\":\"10.3390/e27040379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Natural Language Processing (NLP) stands as a forefront of artificial intelligence research, empowering computational systems to comprehend and process human language as used in everyday contexts. Language models (LMs) underpin this field, striving to capture the intricacies of linguistic structure and semantics by assigning probabilities to sequences of words. The trend towards large language models (LLMs) has shown significant performance improvements with increasing model size. However, the deployment of LLMs on resource-limited devices such as mobile and edge devices remains a challenge. This issue is particularly pronounced in languages other than English, including Korean, where pre-trained models are relatively scarce. Addressing this gap, we introduce a novel lightweight pre-trained Korean language model that leverages knowledge distillation and low-rank factorization techniques. Our approach distills knowledge from a 432 MB (approximately 110 M parameters) teacher model into student models of substantially reduced sizes (e.g., 53 MB ≈ 14 M parameters, 35 MB ≈ 13 M parameters, 30 MB ≈ 11 M parameters, and 18 MB ≈ 4 M parameters). The smaller student models further employ low-rank factorization to minimize the parameter count within the Transformer's feed-forward network (FFN) and embedding layer. We evaluate the efficacy of our lightweight model across six established Korean NLP tasks. Notably, our most compact model, KR-ELECTRA-Small-KD, attains over 97.387% of the teacher model's performance despite an 8.15× reduction in size. Remarkably, on the NSMC sentiment classification benchmark, KR-ELECTRA-Small-KD surpasses the teacher model with an accuracy of 89.720%. These findings underscore the potential of our model as an efficient solution for NLP applications in resource-constrained settings.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026428/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27040379\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040379","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

自然语言处理(NLP)是人工智能研究的前沿,使计算系统能够理解和处理日常环境中使用的人类语言。语言模型(LMs)是这一领域的基础,通过为单词序列分配概率,努力捕捉语言结构和语义的复杂性。随着模型大小的增加,大型语言模型(llm)的趋势已经显示出显著的性能改进。然而,在资源有限的设备(如移动设备和边缘设备)上部署llm仍然是一个挑战。这个问题在英语以外的语言中尤其明显,包括韩语,在这些语言中,预训练的模型相对较少。为了解决这一差距,我们引入了一种新的轻量级预训练韩语模型,该模型利用知识蒸馏和低秩分解技术。我们的方法将432 MB(大约110 M个参数)的教师模型中的知识提取到大大减小的学生模型中(例如,53 MB≈14 M个参数,35 MB≈13 M个参数,30 MB≈11 M个参数和18 MB≈4 M个参数)。较小的学生模型进一步采用低秩分解来最小化Transformer的前馈网络(FFN)和嵌入层中的参数计数。我们评估了我们的轻量级模型在六个已建立的韩国NLP任务中的有效性。值得注意的是,我们最紧凑的模型,KR-ELECTRA-Small-KD,达到了97.387%以上的教师模型的性能,尽管尺寸减少了8.15倍。值得注意的是,在NSMC情感分类基准上,KR-ELECTRA-Small-KD以89.720%的准确率超过了教师模型。这些发现强调了我们的模型作为资源受限环境下自然语言处理应用的有效解决方案的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lightweight Pre-Trained Korean Language Model Based on Knowledge Distillation and Low-Rank Factorization.

Natural Language Processing (NLP) stands as a forefront of artificial intelligence research, empowering computational systems to comprehend and process human language as used in everyday contexts. Language models (LMs) underpin this field, striving to capture the intricacies of linguistic structure and semantics by assigning probabilities to sequences of words. The trend towards large language models (LLMs) has shown significant performance improvements with increasing model size. However, the deployment of LLMs on resource-limited devices such as mobile and edge devices remains a challenge. This issue is particularly pronounced in languages other than English, including Korean, where pre-trained models are relatively scarce. Addressing this gap, we introduce a novel lightweight pre-trained Korean language model that leverages knowledge distillation and low-rank factorization techniques. Our approach distills knowledge from a 432 MB (approximately 110 M parameters) teacher model into student models of substantially reduced sizes (e.g., 53 MB ≈ 14 M parameters, 35 MB ≈ 13 M parameters, 30 MB ≈ 11 M parameters, and 18 MB ≈ 4 M parameters). The smaller student models further employ low-rank factorization to minimize the parameter count within the Transformer's feed-forward network (FFN) and embedding layer. We evaluate the efficacy of our lightweight model across six established Korean NLP tasks. Notably, our most compact model, KR-ELECTRA-Small-KD, attains over 97.387% of the teacher model's performance despite an 8.15× reduction in size. Remarkably, on the NSMC sentiment classification benchmark, KR-ELECTRA-Small-KD surpasses the teacher model with an accuracy of 89.720%. These findings underscore the potential of our model as an efficient solution for NLP applications in resource-constrained settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信