Miriam Ana González-Cela-Casamayor, María J Rodrigo, Marco Brugnera, Inés Munuera, Teresa Martínez-Rincón, Catalina Prats-Lluís, Pilar Villacampa, Julián García-Feijoo, Luis E Pablo, Irene Bravo-Osuna, Elena Garcia-Martin, Rocío Herrero-Vanrell
{"title":"酮咯酸、褪黑素和拉坦前列素三负载PLGA微球对青光眼的神经保护作用。","authors":"Miriam Ana González-Cela-Casamayor, María J Rodrigo, Marco Brugnera, Inés Munuera, Teresa Martínez-Rincón, Catalina Prats-Lluís, Pilar Villacampa, Julián García-Feijoo, Luis E Pablo, Irene Bravo-Osuna, Elena Garcia-Martin, Rocío Herrero-Vanrell","doi":"10.1080/10717544.2025.2484277","DOIUrl":null,"url":null,"abstract":"<p><p>Glaucoma is a multifactorial neurodegenerative disease that affects the retina and optic nerve. The aim of this work was to reach different therapeutics targets by co-encapsulating three neuroprotective substances with hypotensive (latanoprost), antioxidant (melatonin) and anti-inflammatory (ketorolac) activity in biodegradable poly (lactic-co-glycolic acid) (PLGA) microspheres (MSs) capable of releasing the drugs for months after intravitreal injection, avoiding the need for repeated administrations. Multi-loaded PLGA MSs were prepared using the oil-in-water emulsion solvent extraction-evaporation technique and physicochemically characterized. PLGA 85:15 was the polymer ratio selected for the selected formulation. Tri-loaded MSs including vitamin E as additive showed good tolerance in retinal pigment epithelium cells after 24 h exposure (>90% cell viability). The final formulation (KMLVE) resulted in 33.58 ± 5.44 µm particle size and drug content (µg/mg MSs) of 39.70 ± 5.89, 67.28 ± 4.17 and 7.51 ± 0.58 for melatonin, ketorolac and latanoprost respectively. KMLVE were able to release in a sustained manner the three drugs over 70 days. KMLVE were injected at 2 and 12 weeks in Long-Evans rats (n = 20) after the induction of chronic glaucoma. Ophthalmological tests were performed and compared to not treated glaucomatous (n = 45) and healthy (n = 17) animals. Treated glaucomatous rats reached the lowest intraocular pressure, enhanced functionality of bipolar and retinal ganglion cells and showed greater neuroretinal thickness by optical coherence tomography (<i>p</i> < 0.05) compared to not treated glaucomatous rats at 24 weeks follow-up. According to the results, the tri-loaded microspheres can be considered as promising controlled-release system for the treatment of glaucoma.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"32 1","pages":"2484277"},"PeriodicalIF":6.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11995771/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ketorolac, melatonin and latanoprost tri-loaded PLGA microspheres for neuroprotection in glaucoma.\",\"authors\":\"Miriam Ana González-Cela-Casamayor, María J Rodrigo, Marco Brugnera, Inés Munuera, Teresa Martínez-Rincón, Catalina Prats-Lluís, Pilar Villacampa, Julián García-Feijoo, Luis E Pablo, Irene Bravo-Osuna, Elena Garcia-Martin, Rocío Herrero-Vanrell\",\"doi\":\"10.1080/10717544.2025.2484277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glaucoma is a multifactorial neurodegenerative disease that affects the retina and optic nerve. The aim of this work was to reach different therapeutics targets by co-encapsulating three neuroprotective substances with hypotensive (latanoprost), antioxidant (melatonin) and anti-inflammatory (ketorolac) activity in biodegradable poly (lactic-co-glycolic acid) (PLGA) microspheres (MSs) capable of releasing the drugs for months after intravitreal injection, avoiding the need for repeated administrations. Multi-loaded PLGA MSs were prepared using the oil-in-water emulsion solvent extraction-evaporation technique and physicochemically characterized. PLGA 85:15 was the polymer ratio selected for the selected formulation. Tri-loaded MSs including vitamin E as additive showed good tolerance in retinal pigment epithelium cells after 24 h exposure (>90% cell viability). The final formulation (KMLVE) resulted in 33.58 ± 5.44 µm particle size and drug content (µg/mg MSs) of 39.70 ± 5.89, 67.28 ± 4.17 and 7.51 ± 0.58 for melatonin, ketorolac and latanoprost respectively. KMLVE were able to release in a sustained manner the three drugs over 70 days. KMLVE were injected at 2 and 12 weeks in Long-Evans rats (n = 20) after the induction of chronic glaucoma. Ophthalmological tests were performed and compared to not treated glaucomatous (n = 45) and healthy (n = 17) animals. Treated glaucomatous rats reached the lowest intraocular pressure, enhanced functionality of bipolar and retinal ganglion cells and showed greater neuroretinal thickness by optical coherence tomography (<i>p</i> < 0.05) compared to not treated glaucomatous rats at 24 weeks follow-up. According to the results, the tri-loaded microspheres can be considered as promising controlled-release system for the treatment of glaucoma.</p>\",\"PeriodicalId\":11679,\"journal\":{\"name\":\"Drug Delivery\",\"volume\":\"32 1\",\"pages\":\"2484277\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11995771/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10717544.2025.2484277\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10717544.2025.2484277","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Ketorolac, melatonin and latanoprost tri-loaded PLGA microspheres for neuroprotection in glaucoma.
Glaucoma is a multifactorial neurodegenerative disease that affects the retina and optic nerve. The aim of this work was to reach different therapeutics targets by co-encapsulating three neuroprotective substances with hypotensive (latanoprost), antioxidant (melatonin) and anti-inflammatory (ketorolac) activity in biodegradable poly (lactic-co-glycolic acid) (PLGA) microspheres (MSs) capable of releasing the drugs for months after intravitreal injection, avoiding the need for repeated administrations. Multi-loaded PLGA MSs were prepared using the oil-in-water emulsion solvent extraction-evaporation technique and physicochemically characterized. PLGA 85:15 was the polymer ratio selected for the selected formulation. Tri-loaded MSs including vitamin E as additive showed good tolerance in retinal pigment epithelium cells after 24 h exposure (>90% cell viability). The final formulation (KMLVE) resulted in 33.58 ± 5.44 µm particle size and drug content (µg/mg MSs) of 39.70 ± 5.89, 67.28 ± 4.17 and 7.51 ± 0.58 for melatonin, ketorolac and latanoprost respectively. KMLVE were able to release in a sustained manner the three drugs over 70 days. KMLVE were injected at 2 and 12 weeks in Long-Evans rats (n = 20) after the induction of chronic glaucoma. Ophthalmological tests were performed and compared to not treated glaucomatous (n = 45) and healthy (n = 17) animals. Treated glaucomatous rats reached the lowest intraocular pressure, enhanced functionality of bipolar and retinal ganglion cells and showed greater neuroretinal thickness by optical coherence tomography (p < 0.05) compared to not treated glaucomatous rats at 24 weeks follow-up. According to the results, the tri-loaded microspheres can be considered as promising controlled-release system for the treatment of glaucoma.
期刊介绍:
Drug Delivery is an open access journal serving the academic and industrial communities with peer reviewed coverage of basic research, development, and application principles of drug delivery and targeting at molecular, cellular, and higher levels. Topics covered include all delivery systems including oral, pulmonary, nasal, parenteral and transdermal, and modes of entry such as controlled release systems; microcapsules, liposomes, vesicles, and macromolecular conjugates; antibody targeting; protein/peptide delivery; DNA, oligonucleotide and siRNA delivery. Papers on drug dosage forms and their optimization will not be considered unless they directly relate to the original drug delivery issues. Published articles present original research and critical reviews.