Brian D Richardson, Bryan S Blette, Peter B Gilbert, Michael G Hudgens
{"title":"使用校正分数函数解决混淆和连续曝光测量误差。","authors":"Brian D Richardson, Bryan S Blette, Peter B Gilbert, Michael G Hudgens","doi":"10.1093/biomtc/ujaf045","DOIUrl":null,"url":null,"abstract":"<p><p>Confounding and exposure measurement error can introduce bias when drawing inference about the marginal effect of an exposure on an outcome of interest. While there are broad methodologies for addressing each source of bias individually, confounding and exposure measurement error frequently co-occur, and there is a need for methods that address them simultaneously. In this paper, corrected score methods are derived under classical additive measurement error to draw inference about marginal exposure effects using only measured variables. Three estimators are proposed based on g-formula, inverse probability weighting, and doubly-robust estimation techniques. The estimators are shown to be consistent and asymptotically normal, and the doubly-robust estimator is shown to exhibit its namesake property. The methods, which are implemented in the R package mismex, perform well in finite samples under both confounding and measurement error as demonstrated by simulation studies. The proposed doubly-robust estimator is applied to study the effects of two biomarkers on HIV-1 infection using data from the HVTN 505 preventative vaccine trial.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 2","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12038274/pdf/","citationCount":"0","resultStr":"{\"title\":\"Addressing confounding and continuous exposure measurement error using corrected score functions.\",\"authors\":\"Brian D Richardson, Bryan S Blette, Peter B Gilbert, Michael G Hudgens\",\"doi\":\"10.1093/biomtc/ujaf045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Confounding and exposure measurement error can introduce bias when drawing inference about the marginal effect of an exposure on an outcome of interest. While there are broad methodologies for addressing each source of bias individually, confounding and exposure measurement error frequently co-occur, and there is a need for methods that address them simultaneously. In this paper, corrected score methods are derived under classical additive measurement error to draw inference about marginal exposure effects using only measured variables. Three estimators are proposed based on g-formula, inverse probability weighting, and doubly-robust estimation techniques. The estimators are shown to be consistent and asymptotically normal, and the doubly-robust estimator is shown to exhibit its namesake property. The methods, which are implemented in the R package mismex, perform well in finite samples under both confounding and measurement error as demonstrated by simulation studies. The proposed doubly-robust estimator is applied to study the effects of two biomarkers on HIV-1 infection using data from the HVTN 505 preventative vaccine trial.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"81 2\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12038274/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujaf045\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf045","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Addressing confounding and continuous exposure measurement error using corrected score functions.
Confounding and exposure measurement error can introduce bias when drawing inference about the marginal effect of an exposure on an outcome of interest. While there are broad methodologies for addressing each source of bias individually, confounding and exposure measurement error frequently co-occur, and there is a need for methods that address them simultaneously. In this paper, corrected score methods are derived under classical additive measurement error to draw inference about marginal exposure effects using only measured variables. Three estimators are proposed based on g-formula, inverse probability weighting, and doubly-robust estimation techniques. The estimators are shown to be consistent and asymptotically normal, and the doubly-robust estimator is shown to exhibit its namesake property. The methods, which are implemented in the R package mismex, perform well in finite samples under both confounding and measurement error as demonstrated by simulation studies. The proposed doubly-robust estimator is applied to study the effects of two biomarkers on HIV-1 infection using data from the HVTN 505 preventative vaccine trial.
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.