使用校正分数函数解决混淆和连续曝光测量误差。

IF 1.4 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2025-04-02 DOI:10.1093/biomtc/ujaf045
Brian D Richardson, Bryan S Blette, Peter B Gilbert, Michael G Hudgens
{"title":"使用校正分数函数解决混淆和连续曝光测量误差。","authors":"Brian D Richardson, Bryan S Blette, Peter B Gilbert, Michael G Hudgens","doi":"10.1093/biomtc/ujaf045","DOIUrl":null,"url":null,"abstract":"<p><p>Confounding and exposure measurement error can introduce bias when drawing inference about the marginal effect of an exposure on an outcome of interest. While there are broad methodologies for addressing each source of bias individually, confounding and exposure measurement error frequently co-occur, and there is a need for methods that address them simultaneously. In this paper, corrected score methods are derived under classical additive measurement error to draw inference about marginal exposure effects using only measured variables. Three estimators are proposed based on g-formula, inverse probability weighting, and doubly-robust estimation techniques. The estimators are shown to be consistent and asymptotically normal, and the doubly-robust estimator is shown to exhibit its namesake property. The methods, which are implemented in the R package mismex, perform well in finite samples under both confounding and measurement error as demonstrated by simulation studies. The proposed doubly-robust estimator is applied to study the effects of two biomarkers on HIV-1 infection using data from the HVTN 505 preventative vaccine trial.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 2","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12038274/pdf/","citationCount":"0","resultStr":"{\"title\":\"Addressing confounding and continuous exposure measurement error using corrected score functions.\",\"authors\":\"Brian D Richardson, Bryan S Blette, Peter B Gilbert, Michael G Hudgens\",\"doi\":\"10.1093/biomtc/ujaf045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Confounding and exposure measurement error can introduce bias when drawing inference about the marginal effect of an exposure on an outcome of interest. While there are broad methodologies for addressing each source of bias individually, confounding and exposure measurement error frequently co-occur, and there is a need for methods that address them simultaneously. In this paper, corrected score methods are derived under classical additive measurement error to draw inference about marginal exposure effects using only measured variables. Three estimators are proposed based on g-formula, inverse probability weighting, and doubly-robust estimation techniques. The estimators are shown to be consistent and asymptotically normal, and the doubly-robust estimator is shown to exhibit its namesake property. The methods, which are implemented in the R package mismex, perform well in finite samples under both confounding and measurement error as demonstrated by simulation studies. The proposed doubly-robust estimator is applied to study the effects of two biomarkers on HIV-1 infection using data from the HVTN 505 preventative vaccine trial.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"81 2\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12038274/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujaf045\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf045","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

混淆和曝光测量误差可以引入偏差,当得出关于曝光对感兴趣的结果的边际效应的推论。虽然有广泛的方法来单独解决每个偏差来源,但混淆和暴露测量误差经常同时发生,需要同时解决它们的方法。本文在经典的加性测量误差下推导了校正分数方法,仅使用测量变量来推断边际暴露效应。提出了基于g公式、逆概率加权和双鲁棒估计技术的三种估计方法。证明了估计量是相合的和渐近正态的,并证明了双鲁棒估计量具有相同的性质。在R包mismex中实现的方法,在有限的样本中,在混杂和测量误差下都表现良好,仿真研究表明。利用来自HVTN 505预防性疫苗试验的数据,将提出的双稳健估计量应用于研究两种生物标志物对HIV-1感染的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Addressing confounding and continuous exposure measurement error using corrected score functions.

Confounding and exposure measurement error can introduce bias when drawing inference about the marginal effect of an exposure on an outcome of interest. While there are broad methodologies for addressing each source of bias individually, confounding and exposure measurement error frequently co-occur, and there is a need for methods that address them simultaneously. In this paper, corrected score methods are derived under classical additive measurement error to draw inference about marginal exposure effects using only measured variables. Three estimators are proposed based on g-formula, inverse probability weighting, and doubly-robust estimation techniques. The estimators are shown to be consistent and asymptotically normal, and the doubly-robust estimator is shown to exhibit its namesake property. The methods, which are implemented in the R package mismex, perform well in finite samples under both confounding and measurement error as demonstrated by simulation studies. The proposed doubly-robust estimator is applied to study the effects of two biomarkers on HIV-1 infection using data from the HVTN 505 preventative vaccine trial.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信