O P Gavrilova, A S Orina, T Yu Gagkaeva, N N Gogina
{"title":"粮食中增殖镰刀菌产毒能力的研究。","authors":"O P Gavrilova, A S Orina, T Yu Gagkaeva, N N Gogina","doi":"10.32607/actanaturae.27546","DOIUrl":null,"url":null,"abstract":"<p><p>The widespread fungus <i>Fusarium proliferatum</i> can infect numerous plant species and produce a range of mycotoxins, the amount of which can vary significantly. Twelve <i>F. proliferatum</i> sensu lato strains isolated from six wheat, four oat, and two maize grain samples were analyzed. The strains were identified through a phylogenetic analysis of nucleotide sequences derived from gene fragments of the translation elongation factor EF-1α, β-tubulin, and RNA polymerase II second subunit. The mating types of the strain were determined by allele-specific PCR. Secondary toxic metabolite production by the strains was quantified using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). All twelve <i>Fusarium</i> strains formed a distinct clade alongside the <i>F. proliferatum</i> reference strains, thereby confirming the taxonomic identification. Only one idiomorph at the MAT locus in each <i>F. proliferatum</i> strain was found, indicative of heterothallic mating. The frequency of the MAT1-1 idiomorph was double that of the MAT1-2 idiomorph. The active biosynthesis of fumonisins B1 (71-6175 mg/kg), B2 (12-2661 mg/kg), and B3 (6-588 mg/kg), significant beauvericin (64-455 mg/kg), and trace amounts of moniliformin (12-6565 μg/kg) were identified across all examined <i>F. proliferatum</i> strains.</p>","PeriodicalId":6989,"journal":{"name":"Acta Naturae","volume":"17 1","pages":"20-28"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12011193/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Toxin-Producing Ability of Fusarium Proliferatum Strains Isolated from Grain.\",\"authors\":\"O P Gavrilova, A S Orina, T Yu Gagkaeva, N N Gogina\",\"doi\":\"10.32607/actanaturae.27546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The widespread fungus <i>Fusarium proliferatum</i> can infect numerous plant species and produce a range of mycotoxins, the amount of which can vary significantly. Twelve <i>F. proliferatum</i> sensu lato strains isolated from six wheat, four oat, and two maize grain samples were analyzed. The strains were identified through a phylogenetic analysis of nucleotide sequences derived from gene fragments of the translation elongation factor EF-1α, β-tubulin, and RNA polymerase II second subunit. The mating types of the strain were determined by allele-specific PCR. Secondary toxic metabolite production by the strains was quantified using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). All twelve <i>Fusarium</i> strains formed a distinct clade alongside the <i>F. proliferatum</i> reference strains, thereby confirming the taxonomic identification. Only one idiomorph at the MAT locus in each <i>F. proliferatum</i> strain was found, indicative of heterothallic mating. The frequency of the MAT1-1 idiomorph was double that of the MAT1-2 idiomorph. The active biosynthesis of fumonisins B1 (71-6175 mg/kg), B2 (12-2661 mg/kg), and B3 (6-588 mg/kg), significant beauvericin (64-455 mg/kg), and trace amounts of moniliformin (12-6565 μg/kg) were identified across all examined <i>F. proliferatum</i> strains.</p>\",\"PeriodicalId\":6989,\"journal\":{\"name\":\"Acta Naturae\",\"volume\":\"17 1\",\"pages\":\"20-28\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12011193/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Naturae\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.32607/actanaturae.27546\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Naturae","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32607/actanaturae.27546","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
The Toxin-Producing Ability of Fusarium Proliferatum Strains Isolated from Grain.
The widespread fungus Fusarium proliferatum can infect numerous plant species and produce a range of mycotoxins, the amount of which can vary significantly. Twelve F. proliferatum sensu lato strains isolated from six wheat, four oat, and two maize grain samples were analyzed. The strains were identified through a phylogenetic analysis of nucleotide sequences derived from gene fragments of the translation elongation factor EF-1α, β-tubulin, and RNA polymerase II second subunit. The mating types of the strain were determined by allele-specific PCR. Secondary toxic metabolite production by the strains was quantified using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). All twelve Fusarium strains formed a distinct clade alongside the F. proliferatum reference strains, thereby confirming the taxonomic identification. Only one idiomorph at the MAT locus in each F. proliferatum strain was found, indicative of heterothallic mating. The frequency of the MAT1-1 idiomorph was double that of the MAT1-2 idiomorph. The active biosynthesis of fumonisins B1 (71-6175 mg/kg), B2 (12-2661 mg/kg), and B3 (6-588 mg/kg), significant beauvericin (64-455 mg/kg), and trace amounts of moniliformin (12-6565 μg/kg) were identified across all examined F. proliferatum strains.
期刊介绍:
Acta Naturae is an international journal on life sciences based in Moscow, Russia.
Our goal is to present scientific work and discovery in molecular biology, biochemistry, biomedical disciplines and biotechnology. These fields represent the most important priorities for the research and engineering development both in Russia and worldwide. Acta Naturae is also a periodical for those who are curious in various aspects of biotechnological business, innovations in pharmaceutical areas, intellectual property protection and social consequences of scientific progress. The journal publishes analytical industrial surveys focused on the development of different spheres of modern life science and technology.
Being a radically new and totally unique journal in Russia, Acta Naturae is useful to both representatives of fundamental research and experts in applied sciences.