{"title":"体外培养表明,人类整体肠道微生物群组成对甲烷生成的变化具有弹性。","authors":"Taojun Wang, Hauke Smidt, Erwin G Zoetendal","doi":"10.1163/18762891-bja00059","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogen metabolism plays a central role in microbial fermentation. However, how hydrogenotrophic microbes impact microbiota composition and metabolite production in gut ecosystems remains largely unknown. Hence this study aims to investigate the impact of altering hydrogenotrophic activities, namely methanogenesis and sulphate reduction, on human gut microbiota composition and metabolite production. Faecal slurries from three methane excretors (MEs) and three non-methane excretors (NMEs) were inoculated into a basal medium with pectin or a carbohydrate mixture as substrates. Methanogenesis was inhibited by adding 2-bromoethanesulfonate to ME incubations or stimulated by adding Methanobrevibacter smithii to NME incubations. Sulphate reduction was stimulated by adding sodium sulphate to both incubations. Our observations revealed that microbial richness and composition, and propionate and methane production differed significantly between MEs and NMEs. Lower hydrogen concentrations were observed in MEs compared to NMEs in the incubations with pectin, but not with the carbohydrate mixture. Remarkably, sulphate was not consumed in either ME or NME incubations. Adding M. smithii to the NME inocula resulted in its persistence in the community and methane production during incubations. The addition of 2-bromoethanesulfonate inhibited methane production in the ME incubations, accompanied with a lower relative abundance of methanogens when pectin was used as substrate. However, altering methanogenesis did not significantly change overall microbiota composition and short-chain fat acid production in MEs and NMEs. These findings suggest that methanogens can occupy a niche in a microbiota that originally lacks methanogens, but that modulating methanogenesis has a minor effect on overall microbiota composition and activity.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"1-15"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vitro incubation reveals the human overall gut microbiota composition is resilient to changes in methanogenesis.\",\"authors\":\"Taojun Wang, Hauke Smidt, Erwin G Zoetendal\",\"doi\":\"10.1163/18762891-bja00059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hydrogen metabolism plays a central role in microbial fermentation. However, how hydrogenotrophic microbes impact microbiota composition and metabolite production in gut ecosystems remains largely unknown. Hence this study aims to investigate the impact of altering hydrogenotrophic activities, namely methanogenesis and sulphate reduction, on human gut microbiota composition and metabolite production. Faecal slurries from three methane excretors (MEs) and three non-methane excretors (NMEs) were inoculated into a basal medium with pectin or a carbohydrate mixture as substrates. Methanogenesis was inhibited by adding 2-bromoethanesulfonate to ME incubations or stimulated by adding Methanobrevibacter smithii to NME incubations. Sulphate reduction was stimulated by adding sodium sulphate to both incubations. Our observations revealed that microbial richness and composition, and propionate and methane production differed significantly between MEs and NMEs. Lower hydrogen concentrations were observed in MEs compared to NMEs in the incubations with pectin, but not with the carbohydrate mixture. Remarkably, sulphate was not consumed in either ME or NME incubations. Adding M. smithii to the NME inocula resulted in its persistence in the community and methane production during incubations. The addition of 2-bromoethanesulfonate inhibited methane production in the ME incubations, accompanied with a lower relative abundance of methanogens when pectin was used as substrate. However, altering methanogenesis did not significantly change overall microbiota composition and short-chain fat acid production in MEs and NMEs. These findings suggest that methanogens can occupy a niche in a microbiota that originally lacks methanogens, but that modulating methanogenesis has a minor effect on overall microbiota composition and activity.</p>\",\"PeriodicalId\":8834,\"journal\":{\"name\":\"Beneficial microbes\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Beneficial microbes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1163/18762891-bja00059\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beneficial microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1163/18762891-bja00059","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
In vitro incubation reveals the human overall gut microbiota composition is resilient to changes in methanogenesis.
Hydrogen metabolism plays a central role in microbial fermentation. However, how hydrogenotrophic microbes impact microbiota composition and metabolite production in gut ecosystems remains largely unknown. Hence this study aims to investigate the impact of altering hydrogenotrophic activities, namely methanogenesis and sulphate reduction, on human gut microbiota composition and metabolite production. Faecal slurries from three methane excretors (MEs) and three non-methane excretors (NMEs) were inoculated into a basal medium with pectin or a carbohydrate mixture as substrates. Methanogenesis was inhibited by adding 2-bromoethanesulfonate to ME incubations or stimulated by adding Methanobrevibacter smithii to NME incubations. Sulphate reduction was stimulated by adding sodium sulphate to both incubations. Our observations revealed that microbial richness and composition, and propionate and methane production differed significantly between MEs and NMEs. Lower hydrogen concentrations were observed in MEs compared to NMEs in the incubations with pectin, but not with the carbohydrate mixture. Remarkably, sulphate was not consumed in either ME or NME incubations. Adding M. smithii to the NME inocula resulted in its persistence in the community and methane production during incubations. The addition of 2-bromoethanesulfonate inhibited methane production in the ME incubations, accompanied with a lower relative abundance of methanogens when pectin was used as substrate. However, altering methanogenesis did not significantly change overall microbiota composition and short-chain fat acid production in MEs and NMEs. These findings suggest that methanogens can occupy a niche in a microbiota that originally lacks methanogens, but that modulating methanogenesis has a minor effect on overall microbiota composition and activity.
期刊介绍:
Beneficial Microbes is a peer-reviewed scientific journal with a specific area of focus: the promotion of the science of microbes beneficial to the health and wellbeing of man and animal. The journal contains original research papers and critical reviews in all areas dealing with beneficial microbes in both the small and large intestine, together with opinions, a calendar of forthcoming beneficial microbes-related events and book reviews. The journal takes a multidisciplinary approach and focuses on a broad spectrum of issues, including safety aspects of pro- & prebiotics, regulatory aspects, mechanisms of action, health benefits for the host, optimal production processes, screening methods, (meta)genomics, proteomics and metabolomics, host and bacterial physiology, application, and role in health and disease in man and animal. Beneficial Microbes is intended to serve the needs of researchers and professionals from the scientific community and industry, as well as those of policy makers and regulators.
The journal will have five major sections:
* Food, nutrition and health
* Animal nutrition
* Processing and application
* Regulatory & safety aspects
* Medical & health applications
In these sections, topics dealt with by Beneficial Microbes include:
* Worldwide safety and regulatory issues
* Human and animal nutrition and health effects
* Latest discoveries in mechanistic studies and screening methods to unravel mode of action
* Host physiology related to allergy, inflammation, obesity, etc.
* Trends in application of (meta)genomics, proteomics and metabolomics
* New developments in how processing optimizes pro- & prebiotics for application
* Bacterial physiology related to health benefits