E Cansu Cevik, Ramanaiah Mamillapalli, Hugh S Taylor
{"title":"干细胞与女性生殖:子宫内膜生理学、疾病和治疗。","authors":"E Cansu Cevik, Ramanaiah Mamillapalli, Hugh S Taylor","doi":"10.1093/stmcls/sxaf016","DOIUrl":null,"url":null,"abstract":"<p><p>The human endometrium, a dynamic tissue that undergoes cyclical shedding, repair, regeneration, and remodeling, relies on progenitor stem cells for replenishment. Bone marrow-derived mesenchymal stem cells (BM-MSCs) also may play a crucial role in the physiological process of endometrial regeneration, augmenting endometrial repair, supporting pregnancy, and thereby making a major contribution to reproduction. Notably, defective or inappropriate recruitment and engraftment of stem cells are implicated in various reproductive diseases, including endometriosis, highlighting the potential therapeutic avenues offered by stem cell-targeted interventions. Endometrial progenitor cells have shown promise in improving pregnancy outcomes and addressing infertility issues. Furthermore, BM-MSCs demonstrate the potential to reverse pathologies, including Asherman's syndrome and thin endometrium, offering novel approaches to treating infertility, implantation failure, and recurrent pregnancy loss. Mobilization of endogenous stem cells to areas of pathology through chemoattractants also presents a promising strategy for targeted therapy. Finally, endometrium-derived mesenchymal stem cells, characterized by their multipotent nature and ease of collection through minimally invasive techniques, hold promise in a wide range of reproductive and non-reproductive pathologies, including diabetes, kidney disease, Parkinson's disease, or cardiac disorders. As the best of our knowledge of stem cell biology continues to grow, the incorporation of stem cell-based therapies into clinical practice presents significant potential to transform reproductive medicine and enhance patient outcomes.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stem cells and female reproduction: endometrial physiology, disease and therapy.\",\"authors\":\"E Cansu Cevik, Ramanaiah Mamillapalli, Hugh S Taylor\",\"doi\":\"10.1093/stmcls/sxaf016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The human endometrium, a dynamic tissue that undergoes cyclical shedding, repair, regeneration, and remodeling, relies on progenitor stem cells for replenishment. Bone marrow-derived mesenchymal stem cells (BM-MSCs) also may play a crucial role in the physiological process of endometrial regeneration, augmenting endometrial repair, supporting pregnancy, and thereby making a major contribution to reproduction. Notably, defective or inappropriate recruitment and engraftment of stem cells are implicated in various reproductive diseases, including endometriosis, highlighting the potential therapeutic avenues offered by stem cell-targeted interventions. Endometrial progenitor cells have shown promise in improving pregnancy outcomes and addressing infertility issues. Furthermore, BM-MSCs demonstrate the potential to reverse pathologies, including Asherman's syndrome and thin endometrium, offering novel approaches to treating infertility, implantation failure, and recurrent pregnancy loss. Mobilization of endogenous stem cells to areas of pathology through chemoattractants also presents a promising strategy for targeted therapy. Finally, endometrium-derived mesenchymal stem cells, characterized by their multipotent nature and ease of collection through minimally invasive techniques, hold promise in a wide range of reproductive and non-reproductive pathologies, including diabetes, kidney disease, Parkinson's disease, or cardiac disorders. As the best of our knowledge of stem cell biology continues to grow, the incorporation of stem cell-based therapies into clinical practice presents significant potential to transform reproductive medicine and enhance patient outcomes.</p>\",\"PeriodicalId\":231,\"journal\":{\"name\":\"STEM CELLS\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"STEM CELLS\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/stmcls/sxaf016\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"STEM CELLS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stmcls/sxaf016","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Stem cells and female reproduction: endometrial physiology, disease and therapy.
The human endometrium, a dynamic tissue that undergoes cyclical shedding, repair, regeneration, and remodeling, relies on progenitor stem cells for replenishment. Bone marrow-derived mesenchymal stem cells (BM-MSCs) also may play a crucial role in the physiological process of endometrial regeneration, augmenting endometrial repair, supporting pregnancy, and thereby making a major contribution to reproduction. Notably, defective or inappropriate recruitment and engraftment of stem cells are implicated in various reproductive diseases, including endometriosis, highlighting the potential therapeutic avenues offered by stem cell-targeted interventions. Endometrial progenitor cells have shown promise in improving pregnancy outcomes and addressing infertility issues. Furthermore, BM-MSCs demonstrate the potential to reverse pathologies, including Asherman's syndrome and thin endometrium, offering novel approaches to treating infertility, implantation failure, and recurrent pregnancy loss. Mobilization of endogenous stem cells to areas of pathology through chemoattractants also presents a promising strategy for targeted therapy. Finally, endometrium-derived mesenchymal stem cells, characterized by their multipotent nature and ease of collection through minimally invasive techniques, hold promise in a wide range of reproductive and non-reproductive pathologies, including diabetes, kidney disease, Parkinson's disease, or cardiac disorders. As the best of our knowledge of stem cell biology continues to grow, the incorporation of stem cell-based therapies into clinical practice presents significant potential to transform reproductive medicine and enhance patient outcomes.
期刊介绍:
STEM CELLS, a peer reviewed journal published monthly, provides a forum for prompt publication of original investigative papers and concise reviews. STEM CELLS is read and written by clinical and basic scientists whose expertise encompasses the rapidly expanding fields of stem and progenitor cell biology.
STEM CELLS covers:
Cancer Stem Cells,
Embryonic Stem Cells/Induced Pluripotent Stem (iPS) Cells,
Regenerative Medicine,
Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics,
Tissue-Specific Stem Cells,
Translational and Clinical Research.