P2X3受体阻滞剂AF-353 (Ro-4)降低海马神经元原代混合培养的生物能量指数。

Q3 Biochemistry, Genetics and Molecular Biology
A S Zelentsova, M Yu Skorkina, A V Deykin
{"title":"P2X3受体阻滞剂AF-353 (Ro-4)降低海马神经元原代混合培养的生物能量指数。","authors":"A S Zelentsova, M Yu Skorkina, A V Deykin","doi":"10.18097/PBMCR1531","DOIUrl":null,"url":null,"abstract":"<p><p>In clinical studies, the purinergic receptor P2X3 is considered as a molecular target for pain correction in spinal sensory neurons by highly selective antagonists based on diaminopyrimidine derivatives. In the CNS, P2X3 receptors are involved in synaptic plasticity underlying memory and learning. Currently, potent and selective allosteric modulators of P2X3 and P2X2/3 receptors have been recognized among diaminopyrimidine derivatives. These include 5-(5-iodo-2-isopropyl-4-methoxyphenoxy)pyrimidine-2,4-diamine (Ro-4 or AF-353), gefapixant, which have a good pharmacokinetic profile and are less active with respect to a wide range of kinases, receptors, and ion channels. Although the therapeutic value of P2X3 receptor blockade in CNS neurons has not been studied, however, certain evidence exists in the literature that this receptor could represent a new target in the search for antiepileptic drugs, as well as drugs that reduce anxiety and stress. The aim of the work was to study the effect of the P2X3 receptor antagonist AF-353 (Ro-4) on the neuronal bioenergetic health index (BHI) in a primary mixed hippocampal culture. The P2X3 receptor blockade in embryonic and postnatal mouse hippocampal neuron cultures increased non-mitochondrial respiration by 27.5% and 15.8%, respectively, proton loss by 31.0% and 61.4%, and decreased basal respiration by 89% and 39% compared to the control. The neuronal BHI decrease in the postnatal culture was 68% compared to the control. The obtained results indicate the effect of AF-353 on mitochondrial respiration of a primary mixed culture of hippocampal neurons; this reveals the potential of the P2X3 receptor as a pharmacological target in hypoxic conditions of the brain.</p>","PeriodicalId":8889,"journal":{"name":"Biomeditsinskaya khimiya","volume":"71 2","pages":"137-145"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The P2X3 receptor blocker AF-353 (Ro-4) reduces bioenergetic index of a primary mixed culture of hippocampal neurons.\",\"authors\":\"A S Zelentsova, M Yu Skorkina, A V Deykin\",\"doi\":\"10.18097/PBMCR1531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In clinical studies, the purinergic receptor P2X3 is considered as a molecular target for pain correction in spinal sensory neurons by highly selective antagonists based on diaminopyrimidine derivatives. In the CNS, P2X3 receptors are involved in synaptic plasticity underlying memory and learning. Currently, potent and selective allosteric modulators of P2X3 and P2X2/3 receptors have been recognized among diaminopyrimidine derivatives. These include 5-(5-iodo-2-isopropyl-4-methoxyphenoxy)pyrimidine-2,4-diamine (Ro-4 or AF-353), gefapixant, which have a good pharmacokinetic profile and are less active with respect to a wide range of kinases, receptors, and ion channels. Although the therapeutic value of P2X3 receptor blockade in CNS neurons has not been studied, however, certain evidence exists in the literature that this receptor could represent a new target in the search for antiepileptic drugs, as well as drugs that reduce anxiety and stress. The aim of the work was to study the effect of the P2X3 receptor antagonist AF-353 (Ro-4) on the neuronal bioenergetic health index (BHI) in a primary mixed hippocampal culture. The P2X3 receptor blockade in embryonic and postnatal mouse hippocampal neuron cultures increased non-mitochondrial respiration by 27.5% and 15.8%, respectively, proton loss by 31.0% and 61.4%, and decreased basal respiration by 89% and 39% compared to the control. The neuronal BHI decrease in the postnatal culture was 68% compared to the control. The obtained results indicate the effect of AF-353 on mitochondrial respiration of a primary mixed culture of hippocampal neurons; this reveals the potential of the P2X3 receptor as a pharmacological target in hypoxic conditions of the brain.</p>\",\"PeriodicalId\":8889,\"journal\":{\"name\":\"Biomeditsinskaya khimiya\",\"volume\":\"71 2\",\"pages\":\"137-145\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomeditsinskaya khimiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18097/PBMCR1531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomeditsinskaya khimiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18097/PBMCR1531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

在临床研究中,嘌呤能受体P2X3被认为是基于二氨基嘧啶衍生物的高选择性拮抗剂在脊髓感觉神经元中纠正疼痛的分子靶点。在中枢神经系统中,P2X3受体参与记忆和学习的突触可塑性。目前,在二氨基嘧啶衍生物中发现了P2X3和P2X2/3受体的强效和选择性变构调节剂。这些药物包括5-(5-碘-2-异丙基-4-甲氧基苯氧基)嘧啶-2,4-二胺(Ro-4或AF-353), gefapixant,具有良好的药代动力学特征,并且相对于广泛的激酶,受体和离子通道活性较低。虽然P2X3受体阻断对CNS神经元的治疗价值尚未研究,但文献中有一定证据表明,该受体可能是寻找抗癫痫药物以及减轻焦虑和压力药物的新靶点。本研究的目的是研究P2X3受体拮抗剂AF-353 (Ro-4)对初级混合海马培养神经元生物能量健康指数(BHI)的影响。与对照组相比,P2X3受体阻断小鼠胚胎和出生后海马神经元培养物的非线粒体呼吸分别增加27.5%和15.8%,质子损失分别增加31.0%和61.4%,基础呼吸减少89%和39%。与对照组相比,产后培养的神经元BHI下降了68%。结果表明AF-353对原代混合培养海马神经元线粒体呼吸的影响;这揭示了P2X3受体在大脑缺氧条件下作为药理学靶点的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The P2X3 receptor blocker AF-353 (Ro-4) reduces bioenergetic index of a primary mixed culture of hippocampal neurons.

In clinical studies, the purinergic receptor P2X3 is considered as a molecular target for pain correction in spinal sensory neurons by highly selective antagonists based on diaminopyrimidine derivatives. In the CNS, P2X3 receptors are involved in synaptic plasticity underlying memory and learning. Currently, potent and selective allosteric modulators of P2X3 and P2X2/3 receptors have been recognized among diaminopyrimidine derivatives. These include 5-(5-iodo-2-isopropyl-4-methoxyphenoxy)pyrimidine-2,4-diamine (Ro-4 or AF-353), gefapixant, which have a good pharmacokinetic profile and are less active with respect to a wide range of kinases, receptors, and ion channels. Although the therapeutic value of P2X3 receptor blockade in CNS neurons has not been studied, however, certain evidence exists in the literature that this receptor could represent a new target in the search for antiepileptic drugs, as well as drugs that reduce anxiety and stress. The aim of the work was to study the effect of the P2X3 receptor antagonist AF-353 (Ro-4) on the neuronal bioenergetic health index (BHI) in a primary mixed hippocampal culture. The P2X3 receptor blockade in embryonic and postnatal mouse hippocampal neuron cultures increased non-mitochondrial respiration by 27.5% and 15.8%, respectively, proton loss by 31.0% and 61.4%, and decreased basal respiration by 89% and 39% compared to the control. The neuronal BHI decrease in the postnatal culture was 68% compared to the control. The obtained results indicate the effect of AF-353 on mitochondrial respiration of a primary mixed culture of hippocampal neurons; this reveals the potential of the P2X3 receptor as a pharmacological target in hypoxic conditions of the brain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomeditsinskaya khimiya
Biomeditsinskaya khimiya Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
1.30
自引率
0.00%
发文量
49
期刊介绍: The aim of the Russian-language journal "Biomeditsinskaya Khimiya" (Biomedical Chemistry) is to introduce the latest results obtained by scientists from Russia and other Republics of the Former Soviet Union. The Journal will cover all major areas of Biomedical chemistry, including neurochemistry, clinical chemistry, molecular biology of pathological processes, gene therapy, development of new drugs and their biochemical pharmacology, introduction and advertisement of new (biochemical) methods into experimental and clinical medicine etc. The Journal also publish review articles. All issues of journal usually contain invited reviews. Papers written in Russian contain abstract (in English).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信