{"title":"器官纤维化-超越胶原I表达成纤维细胞表型和基底膜蛋白。","authors":"Rachel M Biggs, Amy D Bradshaw","doi":"10.1152/ajpcell.00077.2025","DOIUrl":null,"url":null,"abstract":"<p><p>The prevalence of fibrotic disease and its contribution to organ failure has wide-ranging consequences in terms of both morbidity and mortality and is particularly relevant in chronic conditions that afflict aging populations. The paucity of treatment options for those with fibrosis-dependent complications illustrates the challenge and underlying complexity of controlling and reducing extracellular matrix (ECM) content once fibrosis has been established. Legitimately, a major focus of research in fibrosis has centered on transcriptional regulation of fibrillar collagen, particularly collagen I, and factors that induce the expression of genes encoding the fibrillar collagens. However, knowledge that other facets of extracellular matrix biology, in addition to fibrillar collagen content, also make significant contributions to fibrosis is appreciated with emerging significance. Herein, a summary of some recent advances in uncovering critical fibroblast activation states, ECM organization, and composition of fibrotic ECM including basement membrane components, are discussed. In addition, evidence in support of distinct fibroblast phenotypes in fibrotic tissues, that once established, limit regression of fibrosis despite alleviation of the initiating pathology, is given. As the capacity to reduce established fibrosis has the potential for profound translational significance across organs, more research into each of these important processes is merited.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Organ Fibrosis - Beyond Collagen I Expression Fibroblast Phenotype and Basement Membrane Proteins.\",\"authors\":\"Rachel M Biggs, Amy D Bradshaw\",\"doi\":\"10.1152/ajpcell.00077.2025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The prevalence of fibrotic disease and its contribution to organ failure has wide-ranging consequences in terms of both morbidity and mortality and is particularly relevant in chronic conditions that afflict aging populations. The paucity of treatment options for those with fibrosis-dependent complications illustrates the challenge and underlying complexity of controlling and reducing extracellular matrix (ECM) content once fibrosis has been established. Legitimately, a major focus of research in fibrosis has centered on transcriptional regulation of fibrillar collagen, particularly collagen I, and factors that induce the expression of genes encoding the fibrillar collagens. However, knowledge that other facets of extracellular matrix biology, in addition to fibrillar collagen content, also make significant contributions to fibrosis is appreciated with emerging significance. Herein, a summary of some recent advances in uncovering critical fibroblast activation states, ECM organization, and composition of fibrotic ECM including basement membrane components, are discussed. In addition, evidence in support of distinct fibroblast phenotypes in fibrotic tissues, that once established, limit regression of fibrosis despite alleviation of the initiating pathology, is given. As the capacity to reduce established fibrosis has the potential for profound translational significance across organs, more research into each of these important processes is merited.</p>\",\"PeriodicalId\":7585,\"journal\":{\"name\":\"American journal of physiology. Cell physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Cell physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpcell.00077.2025\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00077.2025","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Organ Fibrosis - Beyond Collagen I Expression Fibroblast Phenotype and Basement Membrane Proteins.
The prevalence of fibrotic disease and its contribution to organ failure has wide-ranging consequences in terms of both morbidity and mortality and is particularly relevant in chronic conditions that afflict aging populations. The paucity of treatment options for those with fibrosis-dependent complications illustrates the challenge and underlying complexity of controlling and reducing extracellular matrix (ECM) content once fibrosis has been established. Legitimately, a major focus of research in fibrosis has centered on transcriptional regulation of fibrillar collagen, particularly collagen I, and factors that induce the expression of genes encoding the fibrillar collagens. However, knowledge that other facets of extracellular matrix biology, in addition to fibrillar collagen content, also make significant contributions to fibrosis is appreciated with emerging significance. Herein, a summary of some recent advances in uncovering critical fibroblast activation states, ECM organization, and composition of fibrotic ECM including basement membrane components, are discussed. In addition, evidence in support of distinct fibroblast phenotypes in fibrotic tissues, that once established, limit regression of fibrosis despite alleviation of the initiating pathology, is given. As the capacity to reduce established fibrosis has the potential for profound translational significance across organs, more research into each of these important processes is merited.
期刊介绍:
The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.