{"title":"组织蛋白酶b诱导的用于活化肿瘤治疗的级联DNA-AuNP纳米机器。","authors":"Huihui Liu, Limei Xu, Ting Wang, Yingqi Liu, Jiajia Pan, Weiwei Xiong, Fenfen Zheng, Yemei Wang, Shasha Sun","doi":"10.1016/j.talanta.2025.128103","DOIUrl":null,"url":null,"abstract":"<p><p>Since targeted and efficient accumulation of nanoparticles into tumors is essential for accurate cancer theranostics, spatiotemporally controlling the aggregation of small nanoparticles (such as gold nanoparticles, AuNPs) in the tumor microenvironment holds significant promise for improving the diagnostic and therapeutic efficiency against tumors. Here, we introduce a cascade DNA-AuNP nanomachine (CNM) that can in situ magnify the protease-catalyzed peptide cleavage via DNA amplification machinery for cathepsin B (Cat B) activity imaging and Cat B-responsive photothermal therapy of tumors. The CNM is composed of a nanomediator formed by tethering a mediator DNA/peptide complex on AuNPs (DpAuNP) and a nanoeffector consisted of AuNPs and DNA modules (DNA-AuNP). In the cascade, Cat B-mediated peptide cleavage of mediator DNA/peptide complex on DpAuNPs initiates both the detachment of fluorescent DNA reporter from DNA-AuNPs for Cat B imaging and the aggregation of AuNPs for tumor photothermal therapy via toehold-mediated stand displacement (TMSD) reaction. Our results demonstrate that the CNM not only offers superior sensitivity and specificity for Cat B imaging, but also facilitates the activated aggregation of AuNPs for enhanced photothermal therapy of tumors. This CNM represents a Cat B-specific sense-and-treat paradigm for cancer theranostics.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"293 ","pages":"128103"},"PeriodicalIF":5.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cathepsin B-induced cascade DNA-AuNP nanomachine for activated tumor theranostics.\",\"authors\":\"Huihui Liu, Limei Xu, Ting Wang, Yingqi Liu, Jiajia Pan, Weiwei Xiong, Fenfen Zheng, Yemei Wang, Shasha Sun\",\"doi\":\"10.1016/j.talanta.2025.128103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Since targeted and efficient accumulation of nanoparticles into tumors is essential for accurate cancer theranostics, spatiotemporally controlling the aggregation of small nanoparticles (such as gold nanoparticles, AuNPs) in the tumor microenvironment holds significant promise for improving the diagnostic and therapeutic efficiency against tumors. Here, we introduce a cascade DNA-AuNP nanomachine (CNM) that can in situ magnify the protease-catalyzed peptide cleavage via DNA amplification machinery for cathepsin B (Cat B) activity imaging and Cat B-responsive photothermal therapy of tumors. The CNM is composed of a nanomediator formed by tethering a mediator DNA/peptide complex on AuNPs (DpAuNP) and a nanoeffector consisted of AuNPs and DNA modules (DNA-AuNP). In the cascade, Cat B-mediated peptide cleavage of mediator DNA/peptide complex on DpAuNPs initiates both the detachment of fluorescent DNA reporter from DNA-AuNPs for Cat B imaging and the aggregation of AuNPs for tumor photothermal therapy via toehold-mediated stand displacement (TMSD) reaction. Our results demonstrate that the CNM not only offers superior sensitivity and specificity for Cat B imaging, but also facilitates the activated aggregation of AuNPs for enhanced photothermal therapy of tumors. This CNM represents a Cat B-specific sense-and-treat paradigm for cancer theranostics.</p>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":\"293 \",\"pages\":\"128103\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.talanta.2025.128103\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2025.128103","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Cathepsin B-induced cascade DNA-AuNP nanomachine for activated tumor theranostics.
Since targeted and efficient accumulation of nanoparticles into tumors is essential for accurate cancer theranostics, spatiotemporally controlling the aggregation of small nanoparticles (such as gold nanoparticles, AuNPs) in the tumor microenvironment holds significant promise for improving the diagnostic and therapeutic efficiency against tumors. Here, we introduce a cascade DNA-AuNP nanomachine (CNM) that can in situ magnify the protease-catalyzed peptide cleavage via DNA amplification machinery for cathepsin B (Cat B) activity imaging and Cat B-responsive photothermal therapy of tumors. The CNM is composed of a nanomediator formed by tethering a mediator DNA/peptide complex on AuNPs (DpAuNP) and a nanoeffector consisted of AuNPs and DNA modules (DNA-AuNP). In the cascade, Cat B-mediated peptide cleavage of mediator DNA/peptide complex on DpAuNPs initiates both the detachment of fluorescent DNA reporter from DNA-AuNPs for Cat B imaging and the aggregation of AuNPs for tumor photothermal therapy via toehold-mediated stand displacement (TMSD) reaction. Our results demonstrate that the CNM not only offers superior sensitivity and specificity for Cat B imaging, but also facilitates the activated aggregation of AuNPs for enhanced photothermal therapy of tumors. This CNM represents a Cat B-specific sense-and-treat paradigm for cancer theranostics.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.