人工智能和数据分析在奶牛场:范围审查。

IF 2.7 2区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Animals Pub Date : 2025-04-30 DOI:10.3390/ani15091291
Osvaldo Palma, Lluis M Plà-Aragonés, Alejandro Mac Cawley, Víctor M Albornoz
{"title":"人工智能和数据分析在奶牛场:范围审查。","authors":"Osvaldo Palma, Lluis M Plà-Aragonés, Alejandro Mac Cawley, Víctor M Albornoz","doi":"10.3390/ani15091291","DOIUrl":null,"url":null,"abstract":"<p><p>The strong growth of the world population will cause a major increase in demand for bovine milk, making it necessary to use various technologies to increase milk production efficiently. Some technologies that can contribute to solving part of this problem are those related to data analytics tools, big data, and sensor development. It is timely to review modern technologies and data analytics methods for milk predictions in view of supporting decision-making in dairy farms. To this end, a scoping review was carried out, which resulted in 151 articles of interest. Among the most important results, we found that (i) the identified studies are relatively recent with an average publication time of 5.95 years; (ii) the scope of the selected studies is mostly concentrated on milk and prediction (29%), early detection of lameness (26%), and timely detection of mastitis (13%); (iii) the type of analysis is mostly predictive (87%), and prescriptive is barely present (3%); (iv) the types of input data used in the studies are preferably historical (70%), and real-time data (25%) are used less frequently; (v) we found that the method of artificial neural networks (47%) and the convolutional neural networks (24%) are the most used for the studies regarding bovine milk output predictions. In the selected studies, the artificial neural network methods have considerable accuracy, recall, precision, and F1 Scores on average but with high ranges and standard deviations. (vi) Simulation tools are scarcely used, being present in 4% of cases. In the treatment of variability, the models reviewed are mostly deterministic (77%), and the stochastic models (5%) are considered in a small number of cases. Based on our analysis, we conclude that future research on decision-making tools will benefit from the advantages of artificial neural networks in data analytics combined with optimization-simulation methods.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"15 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12071016/pdf/","citationCount":"0","resultStr":"{\"title\":\"AI and Data Analytics in the Dairy Farms: A Scoping Review.\",\"authors\":\"Osvaldo Palma, Lluis M Plà-Aragonés, Alejandro Mac Cawley, Víctor M Albornoz\",\"doi\":\"10.3390/ani15091291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The strong growth of the world population will cause a major increase in demand for bovine milk, making it necessary to use various technologies to increase milk production efficiently. Some technologies that can contribute to solving part of this problem are those related to data analytics tools, big data, and sensor development. It is timely to review modern technologies and data analytics methods for milk predictions in view of supporting decision-making in dairy farms. To this end, a scoping review was carried out, which resulted in 151 articles of interest. Among the most important results, we found that (i) the identified studies are relatively recent with an average publication time of 5.95 years; (ii) the scope of the selected studies is mostly concentrated on milk and prediction (29%), early detection of lameness (26%), and timely detection of mastitis (13%); (iii) the type of analysis is mostly predictive (87%), and prescriptive is barely present (3%); (iv) the types of input data used in the studies are preferably historical (70%), and real-time data (25%) are used less frequently; (v) we found that the method of artificial neural networks (47%) and the convolutional neural networks (24%) are the most used for the studies regarding bovine milk output predictions. In the selected studies, the artificial neural network methods have considerable accuracy, recall, precision, and F1 Scores on average but with high ranges and standard deviations. (vi) Simulation tools are scarcely used, being present in 4% of cases. In the treatment of variability, the models reviewed are mostly deterministic (77%), and the stochastic models (5%) are considered in a small number of cases. Based on our analysis, we conclude that future research on decision-making tools will benefit from the advantages of artificial neural networks in data analytics combined with optimization-simulation methods.</p>\",\"PeriodicalId\":7955,\"journal\":{\"name\":\"Animals\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12071016/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animals\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/ani15091291\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani15091291","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

世界人口的强劲增长将导致对牛奶需求的大幅增加,因此有必要使用各种技术来有效地提高牛奶产量。一些与数据分析工具、大数据和传感器开发相关的技术可以帮助解决部分问题。鉴于支持奶牛场的决策,回顾牛奶预测的现代技术和数据分析方法是及时的。为此目的,进行了范围审查,产生了151篇感兴趣的文章。在最重要的结果中,我们发现(i)所确定的研究相对较新,平均发表时间为5.95年;(ii)所选研究的范围主要集中在牛奶和预测(29%)、早期发现跛行(26%)和及时发现乳腺炎(13%);(iii)分析类型主要是预测性的(87%),而规范性的几乎不存在(3%);(iv)研究中使用的输入数据类型最好是历史数据(70%),而实时数据(25%)的使用频率较低;(v)我们发现人工神经网络(47%)和卷积神经网络(24%)的方法在牛乳产量预测研究中使用最多。在所选研究中,人工神经网络方法平均具有较高的准确率、召回率、精密度和F1分数,但极差和标准差较高。很少使用模拟工具,只有4%的案例使用模拟工具。在处理变异性时,所审查的模型大多是确定性的(77%),在少数情况下考虑随机模型(5%)。基于我们的分析,我们得出结论,未来的决策工具研究将受益于人工神经网络在数据分析中的优势,并结合优化模拟方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI and Data Analytics in the Dairy Farms: A Scoping Review.

The strong growth of the world population will cause a major increase in demand for bovine milk, making it necessary to use various technologies to increase milk production efficiently. Some technologies that can contribute to solving part of this problem are those related to data analytics tools, big data, and sensor development. It is timely to review modern technologies and data analytics methods for milk predictions in view of supporting decision-making in dairy farms. To this end, a scoping review was carried out, which resulted in 151 articles of interest. Among the most important results, we found that (i) the identified studies are relatively recent with an average publication time of 5.95 years; (ii) the scope of the selected studies is mostly concentrated on milk and prediction (29%), early detection of lameness (26%), and timely detection of mastitis (13%); (iii) the type of analysis is mostly predictive (87%), and prescriptive is barely present (3%); (iv) the types of input data used in the studies are preferably historical (70%), and real-time data (25%) are used less frequently; (v) we found that the method of artificial neural networks (47%) and the convolutional neural networks (24%) are the most used for the studies regarding bovine milk output predictions. In the selected studies, the artificial neural network methods have considerable accuracy, recall, precision, and F1 Scores on average but with high ranges and standard deviations. (vi) Simulation tools are scarcely used, being present in 4% of cases. In the treatment of variability, the models reviewed are mostly deterministic (77%), and the stochastic models (5%) are considered in a small number of cases. Based on our analysis, we conclude that future research on decision-making tools will benefit from the advantages of artificial neural networks in data analytics combined with optimization-simulation methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Animals
Animals Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍: Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信