基于多频静电力显微镜的纳米级电容光谱。

IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Beilstein Journal of Nanotechnology Pub Date : 2025-05-08 eCollection Date: 2025-01-01 DOI:10.3762/bjnano.16.49
Pascal N Rohrbeck, Lukas D Cavar, Franjo Weber, Peter G Reichel, Mara Niebling, Stefan A L Weber
{"title":"基于多频静电力显微镜的纳米级电容光谱。","authors":"Pascal N Rohrbeck, Lukas D Cavar, Franjo Weber, Peter G Reichel, Mara Niebling, Stefan A L Weber","doi":"10.3762/bjnano.16.49","DOIUrl":null,"url":null,"abstract":"<p><p>We present multifrequency heterodyne electrostatic force microscopy (MFH-EFM) as a novel electrostatic force microscopy method for nanoscale capacitance characterization at arbitrary frequencies above the second cantilever resonance. Besides a high spatial resolution, the key advantage of the multifrequency approach of MFH-EFM is that it measures the second-order capacitance gradient at almost arbitrary frequencies, enabling the measurement of the local dielectric function over a wide range of frequencies. We demonstrate the reliable operation of MFH-EFM using standard atomic force microscopy equipment plus an external lock-in amplifier up to a frequency of 5 MHz, which can in principle be extended to gigahertz frequencies and beyond. Our results show a significant reduction of signal background from long-range electrostatic interactions, resulting in highly localized measurements. Combined with refined tip-sample capacitance models, MFH-EFM will enhance the precision of quantitative studies on dielectric effects in nanoscale systems across materials science, biology, and nanotechnology, complementing established methods in the field.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"16 ","pages":"637-651"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12067100/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nanoscale capacitance spectroscopy based on multifrequency electrostatic force microscopy.\",\"authors\":\"Pascal N Rohrbeck, Lukas D Cavar, Franjo Weber, Peter G Reichel, Mara Niebling, Stefan A L Weber\",\"doi\":\"10.3762/bjnano.16.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present multifrequency heterodyne electrostatic force microscopy (MFH-EFM) as a novel electrostatic force microscopy method for nanoscale capacitance characterization at arbitrary frequencies above the second cantilever resonance. Besides a high spatial resolution, the key advantage of the multifrequency approach of MFH-EFM is that it measures the second-order capacitance gradient at almost arbitrary frequencies, enabling the measurement of the local dielectric function over a wide range of frequencies. We demonstrate the reliable operation of MFH-EFM using standard atomic force microscopy equipment plus an external lock-in amplifier up to a frequency of 5 MHz, which can in principle be extended to gigahertz frequencies and beyond. Our results show a significant reduction of signal background from long-range electrostatic interactions, resulting in highly localized measurements. Combined with refined tip-sample capacitance models, MFH-EFM will enhance the precision of quantitative studies on dielectric effects in nanoscale systems across materials science, biology, and nanotechnology, complementing established methods in the field.</p>\",\"PeriodicalId\":8802,\"journal\":{\"name\":\"Beilstein Journal of Nanotechnology\",\"volume\":\"16 \",\"pages\":\"637-651\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12067100/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Beilstein Journal of Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3762/bjnano.16.49\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3762/bjnano.16.49","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了多频外差静电力显微镜(MFH-EFM)作为一种新的静电力显微镜方法,用于表征第二悬臂共振以上任意频率的纳米级电容。除了高空间分辨率外,MFH-EFM多频方法的关键优势在于它可以在几乎任意频率下测量二阶电容梯度,从而可以在很宽的频率范围内测量局部介电函数。我们演示了MFH-EFM的可靠运行,使用标准的原子力显微镜设备加上一个频率高达5 MHz的外部锁定放大器,原则上可以扩展到千兆赫兹甚至更高的频率。我们的研究结果表明,远程静电相互作用的信号背景显著减少,导致高度局域化的测量。结合精细的尖端样品电容模型,MFH-EFM将提高材料科学,生物学和纳米技术纳米级系统中介电效应定量研究的精度,补充该领域的既定方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanoscale capacitance spectroscopy based on multifrequency electrostatic force microscopy.

We present multifrequency heterodyne electrostatic force microscopy (MFH-EFM) as a novel electrostatic force microscopy method for nanoscale capacitance characterization at arbitrary frequencies above the second cantilever resonance. Besides a high spatial resolution, the key advantage of the multifrequency approach of MFH-EFM is that it measures the second-order capacitance gradient at almost arbitrary frequencies, enabling the measurement of the local dielectric function over a wide range of frequencies. We demonstrate the reliable operation of MFH-EFM using standard atomic force microscopy equipment plus an external lock-in amplifier up to a frequency of 5 MHz, which can in principle be extended to gigahertz frequencies and beyond. Our results show a significant reduction of signal background from long-range electrostatic interactions, resulting in highly localized measurements. Combined with refined tip-sample capacitance models, MFH-EFM will enhance the precision of quantitative studies on dielectric effects in nanoscale systems across materials science, biology, and nanotechnology, complementing established methods in the field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Beilstein Journal of Nanotechnology
Beilstein Journal of Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.70
自引率
3.20%
发文量
109
审稿时长
2 months
期刊介绍: The Beilstein Journal of Nanotechnology is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in nanoscience and nanotechnology. The journal is published and completely funded by the Beilstein-Institut, a non-profit foundation located in Frankfurt am Main, Germany. The editor-in-chief is Professor Thomas Schimmel – Karlsruhe Institute of Technology. He is supported by more than 20 associate editors who are responsible for a particular subject area within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信