Cecilia Zumajo-Cardona, Barbara A Ambrose, Yesenia Madrigal, Natalia Pabón-Mora
{"title":"芸苔科和罂粟科的开裂果实:形态解剖特征趋同,潜在的遗传机制不同。","authors":"Cecilia Zumajo-Cardona, Barbara A Ambrose, Yesenia Madrigal, Natalia Pabón-Mora","doi":"10.1093/aob/mcaf079","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Dry dehiscent fruits have independently evolved multiple times during angiosperm diversification. A striking example is the convergent evolution of Brassicaceae siliques and Papaveraceae pods, both formed by two fused carpels forming valves, that meet at a replum or replum-like structure. In both cases, valve separation occurs through a dehiscence zone at the valve margins in contact with the replum. In Arabidopsis, fruit development is regulated by transcription factors: FRUITFULL (FUL) ensures proper valve cell division, REPLUMLESS (RPL) specifies replum identity, and SHATTERPROOF (SHP1/2) genes pattern the dehiscence zone. SHP1/2 also regulate INDEHISCENT (IND) for lignified layer formation and ALCATRAZ (ALC) and SPATULA (SPT) for the non-lignified layer, with the network antagonized by APETALA2 (AP2), which influences replum formation and valve margin growth.</p><p><strong>Methods: </strong>Using previously published and new In situ RNA hybridization expression data, we evaluated how this network applies to basal eudicots.</p><p><strong>Key results: </strong>In Bocconia frutescens, homolog expression suggests conserved roles for FUL and AP2 in fruit wall proliferation, acting antagonistically to ALC and RPL homologs localized to the dehiscence zone. A role for STK homologs in dehiscence zone formation cannot be excluded, while the role of AG-like genes, the closest homologs of SHP during fruit development is unlikely.</p><p><strong>Conclusions: </strong>Our findings indicate significant rewiring of the fruit developmental network between basal and core eudicots, underscoring the need for functional studies in non-eudicot species to validate this framework.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dehiscent fruits in Brassicaceae and Papaveraceae: convergent morpho-anatomical features with divergent underlying genetic mechanisms.\",\"authors\":\"Cecilia Zumajo-Cardona, Barbara A Ambrose, Yesenia Madrigal, Natalia Pabón-Mora\",\"doi\":\"10.1093/aob/mcaf079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and aims: </strong>Dry dehiscent fruits have independently evolved multiple times during angiosperm diversification. A striking example is the convergent evolution of Brassicaceae siliques and Papaveraceae pods, both formed by two fused carpels forming valves, that meet at a replum or replum-like structure. In both cases, valve separation occurs through a dehiscence zone at the valve margins in contact with the replum. In Arabidopsis, fruit development is regulated by transcription factors: FRUITFULL (FUL) ensures proper valve cell division, REPLUMLESS (RPL) specifies replum identity, and SHATTERPROOF (SHP1/2) genes pattern the dehiscence zone. SHP1/2 also regulate INDEHISCENT (IND) for lignified layer formation and ALCATRAZ (ALC) and SPATULA (SPT) for the non-lignified layer, with the network antagonized by APETALA2 (AP2), which influences replum formation and valve margin growth.</p><p><strong>Methods: </strong>Using previously published and new In situ RNA hybridization expression data, we evaluated how this network applies to basal eudicots.</p><p><strong>Key results: </strong>In Bocconia frutescens, homolog expression suggests conserved roles for FUL and AP2 in fruit wall proliferation, acting antagonistically to ALC and RPL homologs localized to the dehiscence zone. A role for STK homologs in dehiscence zone formation cannot be excluded, while the role of AG-like genes, the closest homologs of SHP during fruit development is unlikely.</p><p><strong>Conclusions: </strong>Our findings indicate significant rewiring of the fruit developmental network between basal and core eudicots, underscoring the need for functional studies in non-eudicot species to validate this framework.</p>\",\"PeriodicalId\":8023,\"journal\":{\"name\":\"Annals of botany\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/aob/mcaf079\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aob/mcaf079","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Dehiscent fruits in Brassicaceae and Papaveraceae: convergent morpho-anatomical features with divergent underlying genetic mechanisms.
Background and aims: Dry dehiscent fruits have independently evolved multiple times during angiosperm diversification. A striking example is the convergent evolution of Brassicaceae siliques and Papaveraceae pods, both formed by two fused carpels forming valves, that meet at a replum or replum-like structure. In both cases, valve separation occurs through a dehiscence zone at the valve margins in contact with the replum. In Arabidopsis, fruit development is regulated by transcription factors: FRUITFULL (FUL) ensures proper valve cell division, REPLUMLESS (RPL) specifies replum identity, and SHATTERPROOF (SHP1/2) genes pattern the dehiscence zone. SHP1/2 also regulate INDEHISCENT (IND) for lignified layer formation and ALCATRAZ (ALC) and SPATULA (SPT) for the non-lignified layer, with the network antagonized by APETALA2 (AP2), which influences replum formation and valve margin growth.
Methods: Using previously published and new In situ RNA hybridization expression data, we evaluated how this network applies to basal eudicots.
Key results: In Bocconia frutescens, homolog expression suggests conserved roles for FUL and AP2 in fruit wall proliferation, acting antagonistically to ALC and RPL homologs localized to the dehiscence zone. A role for STK homologs in dehiscence zone formation cannot be excluded, while the role of AG-like genes, the closest homologs of SHP during fruit development is unlikely.
Conclusions: Our findings indicate significant rewiring of the fruit developmental network between basal and core eudicots, underscoring the need for functional studies in non-eudicot species to validate this framework.
期刊介绍:
Annals of Botany is an international plant science journal publishing novel and rigorous research in all areas of plant science. It is published monthly in both electronic and printed forms with at least two extra issues each year that focus on a particular theme in plant biology. The Journal is managed by the Annals of Botany Company, a not-for-profit educational charity established to promote plant science worldwide.
The Journal publishes original research papers, invited and submitted review articles, ''Research in Context'' expanding on original work, ''Botanical Briefings'' as short overviews of important topics, and ''Viewpoints'' giving opinions. All papers in each issue are summarized briefly in Content Snapshots , there are topical news items in the Plant Cuttings section and Book Reviews . A rigorous review process ensures that readers are exposed to genuine and novel advances across a wide spectrum of botanical knowledge. All papers aim to advance knowledge and make a difference to our understanding of plant science.