T细胞中的蛋白质合成和代谢。

IF 26.9 1区 医学 Q1 IMMUNOLOGY
Linda V Sinclair, Doreen A Cantrell
{"title":"T细胞中的蛋白质合成和代谢。","authors":"Linda V Sinclair, Doreen A Cantrell","doi":"10.1146/annurev-immunol-082323-035253","DOIUrl":null,"url":null,"abstract":"<p><p>T lymphocytes are essential for immune responses to pathogens and tumors. Their ability to rapidly clonally expand and differentiate to effector cells following infection, and then to curb effector function following infection clearance, is fundamental for adaptive immunity. Proteome remodeling in response to immune activation is a fundamental mechanism that allows T cells to swiftly reprogram for acquisition of effector function and is possible only because antigen receptor- and cytokine-driven signal transduction pathways can trigger massive increases in protein synthesis. Equally, the ability to repress protein synthesis supports a return to quiescence once pathogens are cleared to avoid autoimmunity and to generate memory T cell populations. This review discusses what is known about T cell proteomes and the regulatory mechanisms that control protein synthesis in T cells. The focus is on how this fundamental process is dynamically controlled to ensure immune homeostasis.</p>","PeriodicalId":8271,"journal":{"name":"Annual review of immunology","volume":"43 1","pages":"343-366"},"PeriodicalIF":26.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protein Synthesis and Metabolism in T Cells.\",\"authors\":\"Linda V Sinclair, Doreen A Cantrell\",\"doi\":\"10.1146/annurev-immunol-082323-035253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>T lymphocytes are essential for immune responses to pathogens and tumors. Their ability to rapidly clonally expand and differentiate to effector cells following infection, and then to curb effector function following infection clearance, is fundamental for adaptive immunity. Proteome remodeling in response to immune activation is a fundamental mechanism that allows T cells to swiftly reprogram for acquisition of effector function and is possible only because antigen receptor- and cytokine-driven signal transduction pathways can trigger massive increases in protein synthesis. Equally, the ability to repress protein synthesis supports a return to quiescence once pathogens are cleared to avoid autoimmunity and to generate memory T cell populations. This review discusses what is known about T cell proteomes and the regulatory mechanisms that control protein synthesis in T cells. The focus is on how this fundamental process is dynamically controlled to ensure immune homeostasis.</p>\",\"PeriodicalId\":8271,\"journal\":{\"name\":\"Annual review of immunology\",\"volume\":\"43 1\",\"pages\":\"343-366\"},\"PeriodicalIF\":26.9000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-immunol-082323-035253\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-immunol-082323-035253","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

T淋巴细胞对病原体和肿瘤的免疫反应至关重要。它们在感染后迅速克隆扩增并分化为效应细胞,然后在感染清除后抑制效应细胞的功能,是适应性免疫的基础。响应免疫激活的蛋白质组重塑是一种基本机制,它允许T细胞迅速重编程以获得效应功能,这是可能的,因为抗原受体和细胞因子驱动的信号转导途径可以触发蛋白质合成的大量增加。同样,一旦病原体被清除以避免自身免疫和产生记忆T细胞群,抑制蛋白质合成的能力支持恢复静止。本文综述了目前已知的T细胞蛋白质组和控制T细胞蛋白质合成的调控机制。重点是如何动态控制这一基本过程以确保免疫稳态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Protein Synthesis and Metabolism in T Cells.

T lymphocytes are essential for immune responses to pathogens and tumors. Their ability to rapidly clonally expand and differentiate to effector cells following infection, and then to curb effector function following infection clearance, is fundamental for adaptive immunity. Proteome remodeling in response to immune activation is a fundamental mechanism that allows T cells to swiftly reprogram for acquisition of effector function and is possible only because antigen receptor- and cytokine-driven signal transduction pathways can trigger massive increases in protein synthesis. Equally, the ability to repress protein synthesis supports a return to quiescence once pathogens are cleared to avoid autoimmunity and to generate memory T cell populations. This review discusses what is known about T cell proteomes and the regulatory mechanisms that control protein synthesis in T cells. The focus is on how this fundamental process is dynamically controlled to ensure immune homeostasis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual review of immunology
Annual review of immunology 医学-免疫学
CiteScore
57.20
自引率
0.70%
发文量
29
期刊介绍: The Annual Review of Immunology, in publication since 1983, focuses on basic immune mechanisms and molecular basis of immune diseases in humans. Topics include innate and adaptive immunity; immune cell development and differentiation; immune control of pathogens (viruses, bacteria, parasites) and cancer; and human immunodeficiency and autoimmune diseases. The current volume of this journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信