基于CRISPR/Cas12a系统和外切酶辅助靶标循环信号放大的microRNA超灵敏生物传感器检测。

IF 1.8 4区 化学 Q3 CHEMISTRY, ANALYTICAL
Xing Yang, Yu Luo, Chunhua Su, Zhimei Huang, Yafang Tang, Liwen Zhang
{"title":"基于CRISPR/Cas12a系统和外切酶辅助靶标循环信号放大的microRNA超灵敏生物传感器检测。","authors":"Xing Yang, Yu Luo, Chunhua Su, Zhimei Huang, Yafang Tang, Liwen Zhang","doi":"10.1007/s44211-025-00755-3","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs (miRNAs) are essential regulators of gene expression and are significantly involved in both preventing and treating a range of diseases. To that end, we developed an ultra-sensitive detection method for miRNA-141 by integrating exonuclease-assisted target recycling signal amplification with the CRISPR/Cas12a system. This method employs a variable hairpin probe (HP) designed to hybridize with miRNA, which, under the action of exonuclease III (ExoIII), cleaves the hairpin probe and triggers target recycling signal amplification. This results in the formation of output DNAs (ODs) containing multiple repeat sequences. The CRISPR/Cas12a system identifies these repeated sequences in ODs through its crRNA component, which in turn triggers the trans-cleavage function of the Cas12a/crRNA complex. It leads to the cleavage of a fluorescently quenched reporter probe. Consequently, this process restores fluorescence, producing a significantly enhanced fluorescent signal that facilitates the detection of miRNA-141, achieving a detection threshold down to 62 fM. This detection approach can specifically differentiate miRNA-141 from other confounding substances and has effectively identified low concentrations of miRNA-141 in actual sample human serum and diverse cancer cell lysates, showcasing its capability for tracing various nucleic acid biomarkers at minimal levels.</p>","PeriodicalId":7802,"journal":{"name":"Analytical Sciences","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-sensitive biosensor detection of microRNA based on the CRISPR/Cas12a system and exonuclease-assisted target recycling signal amplification.\",\"authors\":\"Xing Yang, Yu Luo, Chunhua Su, Zhimei Huang, Yafang Tang, Liwen Zhang\",\"doi\":\"10.1007/s44211-025-00755-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MicroRNAs (miRNAs) are essential regulators of gene expression and are significantly involved in both preventing and treating a range of diseases. To that end, we developed an ultra-sensitive detection method for miRNA-141 by integrating exonuclease-assisted target recycling signal amplification with the CRISPR/Cas12a system. This method employs a variable hairpin probe (HP) designed to hybridize with miRNA, which, under the action of exonuclease III (ExoIII), cleaves the hairpin probe and triggers target recycling signal amplification. This results in the formation of output DNAs (ODs) containing multiple repeat sequences. The CRISPR/Cas12a system identifies these repeated sequences in ODs through its crRNA component, which in turn triggers the trans-cleavage function of the Cas12a/crRNA complex. It leads to the cleavage of a fluorescently quenched reporter probe. Consequently, this process restores fluorescence, producing a significantly enhanced fluorescent signal that facilitates the detection of miRNA-141, achieving a detection threshold down to 62 fM. This detection approach can specifically differentiate miRNA-141 from other confounding substances and has effectively identified low concentrations of miRNA-141 in actual sample human serum and diverse cancer cell lysates, showcasing its capability for tracing various nucleic acid biomarkers at minimal levels.</p>\",\"PeriodicalId\":7802,\"journal\":{\"name\":\"Analytical Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Sciences\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s44211-025-00755-3\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Sciences","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s44211-025-00755-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

MicroRNAs (miRNAs)是基因表达的重要调控因子,在预防和治疗一系列疾病中发挥着重要作用。为此,我们将外切酶辅助的靶标循环信号扩增与CRISPR/Cas12a系统结合,开发了一种超灵敏的miRNA-141检测方法。该方法采用可变发夹探针(HP)与miRNA杂交,在外切酶III (ExoIII)的作用下,将发夹探针切割,触发靶循环信号放大。这导致形成包含多个重复序列的输出dna (od)。CRISPR/Cas12a系统通过其crRNA成分识别出ODs中的这些重复序列,进而触发Cas12a/crRNA复合物的反式切割功能。它导致一个荧光猝灭的报告探针的裂解。因此,这一过程恢复了荧光,产生了显著增强的荧光信号,有利于miRNA-141的检测,实现了低至62 fM的检测阈值。该检测方法能够特异性地将miRNA-141与其他混杂物质区分开来,并有效地鉴定了实际样品人血清和多种癌细胞裂解物中低浓度的miRNA-141,显示了其在最低水平下追踪各种核酸生物标志物的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultra-sensitive biosensor detection of microRNA based on the CRISPR/Cas12a system and exonuclease-assisted target recycling signal amplification.

MicroRNAs (miRNAs) are essential regulators of gene expression and are significantly involved in both preventing and treating a range of diseases. To that end, we developed an ultra-sensitive detection method for miRNA-141 by integrating exonuclease-assisted target recycling signal amplification with the CRISPR/Cas12a system. This method employs a variable hairpin probe (HP) designed to hybridize with miRNA, which, under the action of exonuclease III (ExoIII), cleaves the hairpin probe and triggers target recycling signal amplification. This results in the formation of output DNAs (ODs) containing multiple repeat sequences. The CRISPR/Cas12a system identifies these repeated sequences in ODs through its crRNA component, which in turn triggers the trans-cleavage function of the Cas12a/crRNA complex. It leads to the cleavage of a fluorescently quenched reporter probe. Consequently, this process restores fluorescence, producing a significantly enhanced fluorescent signal that facilitates the detection of miRNA-141, achieving a detection threshold down to 62 fM. This detection approach can specifically differentiate miRNA-141 from other confounding substances and has effectively identified low concentrations of miRNA-141 in actual sample human serum and diverse cancer cell lysates, showcasing its capability for tracing various nucleic acid biomarkers at minimal levels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Sciences
Analytical Sciences 化学-分析化学
CiteScore
2.90
自引率
18.80%
发文量
232
审稿时长
1 months
期刊介绍: Analytical Sciences is an international journal published monthly by The Japan Society for Analytical Chemistry. The journal publishes papers on all aspects of the theory and practice of analytical sciences, including fundamental and applied, inorganic and organic, wet chemical and instrumental methods. This publication is supported in part by the Grant-in-Aid for Publication of Scientific Research Result of the Japanese Ministry of Education, Culture, Sports, Science and Technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信