Bruna Sabatke, Izadora Volpato Rossi, Marcel I Ramirez
{"title":"相互作用囊泡作为宿主-病原体分子串扰的新介质及其对感染动力学的影响。","authors":"Bruna Sabatke, Izadora Volpato Rossi, Marcel I Ramirez","doi":"10.1002/1873-3468.70055","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular vesicles (EVs) are critical in cell communication, transfer of biomolecules, and host-pathogen interaction. A newly identified subset, \"interaction vesicles\" (iEVs), forms through host-pathogen contact, merging membrane elements from both. These iEVs may arise through multiple mechanisms, including direct cell-cell contact, membrane contact sites, uptake and repackaging of foreign EVs, and post-release fusion of EVs. These hybrid vesicles enable pathogens to modify host environments, aiding immune evasion and infection persistence. However, iEVs may also act in favor of the host, contributing to pathogen recognition and elimination. Advanced techniques, including proteomics and high-resolution microscopy, are beginning to clarify their composition and fusion. Yet, isolating these hybrid EVs remains challenging. Overcoming these barriers could enhance understanding of infection mechanisms and support diagnostic and therapeutic innovation.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interaction vesicles as emerging mediators of host-pathogen molecular crosstalk and their implications for infection dynamics.\",\"authors\":\"Bruna Sabatke, Izadora Volpato Rossi, Marcel I Ramirez\",\"doi\":\"10.1002/1873-3468.70055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extracellular vesicles (EVs) are critical in cell communication, transfer of biomolecules, and host-pathogen interaction. A newly identified subset, \\\"interaction vesicles\\\" (iEVs), forms through host-pathogen contact, merging membrane elements from both. These iEVs may arise through multiple mechanisms, including direct cell-cell contact, membrane contact sites, uptake and repackaging of foreign EVs, and post-release fusion of EVs. These hybrid vesicles enable pathogens to modify host environments, aiding immune evasion and infection persistence. However, iEVs may also act in favor of the host, contributing to pathogen recognition and elimination. Advanced techniques, including proteomics and high-resolution microscopy, are beginning to clarify their composition and fusion. Yet, isolating these hybrid EVs remains challenging. Overcoming these barriers could enhance understanding of infection mechanisms and support diagnostic and therapeutic innovation.</p>\",\"PeriodicalId\":12142,\"journal\":{\"name\":\"FEBS Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEBS Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/1873-3468.70055\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/1873-3468.70055","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Interaction vesicles as emerging mediators of host-pathogen molecular crosstalk and their implications for infection dynamics.
Extracellular vesicles (EVs) are critical in cell communication, transfer of biomolecules, and host-pathogen interaction. A newly identified subset, "interaction vesicles" (iEVs), forms through host-pathogen contact, merging membrane elements from both. These iEVs may arise through multiple mechanisms, including direct cell-cell contact, membrane contact sites, uptake and repackaging of foreign EVs, and post-release fusion of EVs. These hybrid vesicles enable pathogens to modify host environments, aiding immune evasion and infection persistence. However, iEVs may also act in favor of the host, contributing to pathogen recognition and elimination. Advanced techniques, including proteomics and high-resolution microscopy, are beginning to clarify their composition and fusion. Yet, isolating these hybrid EVs remains challenging. Overcoming these barriers could enhance understanding of infection mechanisms and support diagnostic and therapeutic innovation.
期刊介绍:
FEBS Letters is one of the world''s leading journals in molecular biology and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, Research Letters and Hypotheses that merit urgent publication.