骨质疏松性骨折常见部位的金属(oid)谱与骨微结构相关分析:髋部骨折患者与健康个体的比较研究

IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Aleksandar Cirovic, Danijela Djonic, Vladimir Zivkovic, Slobodan Nikolic, Marija Djuric, Petar Milovanovic
{"title":"骨质疏松性骨折常见部位的金属(oid)谱与骨微结构相关分析:髋部骨折患者与健康个体的比较研究","authors":"Aleksandar Cirovic, Danijela Djonic, Vladimir Zivkovic, Slobodan Nikolic, Marija Djuric, Petar Milovanovic","doi":"10.1007/s10534-025-00689-3","DOIUrl":null,"url":null,"abstract":"<p><p>Increased urine and blood concentrations of heavy metals are linked to an elevated hip fracture risk, but studies dedicated to directly measuring metal(oid) concentrations in the femoral neck are limited. We investigated whether individuals with fractures exhibit a different pattern of metal(oid) bioaccumulation in the femoral neck and examined potential correlations between the concentrations of various metal(oid)s in the femoral neck and trabecular microarchitecture. To address these objectives, we collected femoral neck specimens from 23 individuals, namely 11 individuals with a positive history of contralateral hip fracture (9 women and 2 men, mean age 77.7 ± 8.1 years) and 12 individuals without fractures (10 women and 2 men, mean age 79.5 ± 5.6 years). All samples were subject to microcomputed tomography (micro-CT) to evaluate bone microarchitecture and inductively coupled plasma-mass spectrometry to determine tissue concentrations of metal(oid)s. In the fully adjusted model (adjusted for bone volume, age, and calcium tissue concentration), individuals with hip fractures exhibited higher aluminum levels (p = 0.047) and lower vanadium levels (p < 0.001). Individuals who sustained fragility fractures also showed lower BV/TV, Tb.Th, Tb.N, and higher Tb.Sp in the femoral neck trabeculae compared with the control group. Several different metal(oid)s were associated with altered patterns of trabecular microarchitecture. In summary, higher aluminum and lower vanadium concentrations in the trabeculae of the femoral neck provide a potential background for the gradual increase in fracture risk. Correlational analysis revealed an association between exposure to certain metals and deteriorated trabecular microarchitecture; however, larger studies are needed to determine the elements independently affecting bone microarchitecture.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal(oid) profiling of the common site of osteoporotic fractures with bone microarchitecture correlation analysis: a comparative study of hip fracture patients and healthy individuals.\",\"authors\":\"Aleksandar Cirovic, Danijela Djonic, Vladimir Zivkovic, Slobodan Nikolic, Marija Djuric, Petar Milovanovic\",\"doi\":\"10.1007/s10534-025-00689-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Increased urine and blood concentrations of heavy metals are linked to an elevated hip fracture risk, but studies dedicated to directly measuring metal(oid) concentrations in the femoral neck are limited. We investigated whether individuals with fractures exhibit a different pattern of metal(oid) bioaccumulation in the femoral neck and examined potential correlations between the concentrations of various metal(oid)s in the femoral neck and trabecular microarchitecture. To address these objectives, we collected femoral neck specimens from 23 individuals, namely 11 individuals with a positive history of contralateral hip fracture (9 women and 2 men, mean age 77.7 ± 8.1 years) and 12 individuals without fractures (10 women and 2 men, mean age 79.5 ± 5.6 years). All samples were subject to microcomputed tomography (micro-CT) to evaluate bone microarchitecture and inductively coupled plasma-mass spectrometry to determine tissue concentrations of metal(oid)s. In the fully adjusted model (adjusted for bone volume, age, and calcium tissue concentration), individuals with hip fractures exhibited higher aluminum levels (p = 0.047) and lower vanadium levels (p < 0.001). Individuals who sustained fragility fractures also showed lower BV/TV, Tb.Th, Tb.N, and higher Tb.Sp in the femoral neck trabeculae compared with the control group. Several different metal(oid)s were associated with altered patterns of trabecular microarchitecture. In summary, higher aluminum and lower vanadium concentrations in the trabeculae of the femoral neck provide a potential background for the gradual increase in fracture risk. Correlational analysis revealed an association between exposure to certain metals and deteriorated trabecular microarchitecture; however, larger studies are needed to determine the elements independently affecting bone microarchitecture.</p>\",\"PeriodicalId\":491,\"journal\":{\"name\":\"Biometals\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometals\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10534-025-00689-3\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometals","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10534-025-00689-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

尿液和血液中重金属浓度升高与髋部骨折风险升高有关,但专门用于直接测量股骨颈金属(类金属)浓度的研究有限。我们研究了骨折患者是否在股骨颈表现出不同的金属(类)生物积累模式,并研究了股骨颈中各种金属(类)浓度与小梁微结构之间的潜在相关性。为了实现这些目标,我们收集了23个人的股骨颈标本,其中11个人有对侧髋部骨折的阳性病史(9名女性和2名男性,平均年龄77.7±8.1岁),12个人没有骨折(10名女性和2名男性,平均年龄79.5±5.6岁)。所有样品均采用显微计算机断层扫描(micro-CT)评估骨微结构,并采用电感耦合等离子体质谱法测定组织中金属(类)s的浓度。在完全调整模型中(根据骨体积、年龄和钙组织浓度进行调整),髋部骨折患者的铝水平较高(p = 0.047),钒水平较低(p = 0.047)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metal(oid) profiling of the common site of osteoporotic fractures with bone microarchitecture correlation analysis: a comparative study of hip fracture patients and healthy individuals.

Increased urine and blood concentrations of heavy metals are linked to an elevated hip fracture risk, but studies dedicated to directly measuring metal(oid) concentrations in the femoral neck are limited. We investigated whether individuals with fractures exhibit a different pattern of metal(oid) bioaccumulation in the femoral neck and examined potential correlations between the concentrations of various metal(oid)s in the femoral neck and trabecular microarchitecture. To address these objectives, we collected femoral neck specimens from 23 individuals, namely 11 individuals with a positive history of contralateral hip fracture (9 women and 2 men, mean age 77.7 ± 8.1 years) and 12 individuals without fractures (10 women and 2 men, mean age 79.5 ± 5.6 years). All samples were subject to microcomputed tomography (micro-CT) to evaluate bone microarchitecture and inductively coupled plasma-mass spectrometry to determine tissue concentrations of metal(oid)s. In the fully adjusted model (adjusted for bone volume, age, and calcium tissue concentration), individuals with hip fractures exhibited higher aluminum levels (p = 0.047) and lower vanadium levels (p < 0.001). Individuals who sustained fragility fractures also showed lower BV/TV, Tb.Th, Tb.N, and higher Tb.Sp in the femoral neck trabeculae compared with the control group. Several different metal(oid)s were associated with altered patterns of trabecular microarchitecture. In summary, higher aluminum and lower vanadium concentrations in the trabeculae of the femoral neck provide a potential background for the gradual increase in fracture risk. Correlational analysis revealed an association between exposure to certain metals and deteriorated trabecular microarchitecture; however, larger studies are needed to determine the elements independently affecting bone microarchitecture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometals
Biometals 生物-生化与分子生物学
CiteScore
5.90
自引率
8.60%
发文量
111
审稿时长
3 months
期刊介绍: BioMetals is the only established journal to feature the important role of metal ions in chemistry, biology, biochemistry, environmental science, and medicine. BioMetals is an international, multidisciplinary journal singularly devoted to the rapid publication of the fundamental advances of both basic and applied research in this field. BioMetals offers a forum for innovative research and clinical results on the structure and function of: - metal ions - metal chelates, - siderophores, - metal-containing proteins - biominerals in all biosystems. - BioMetals rapidly publishes original articles and reviews. BioMetals is a journal for metals researchers who practice in medicine, biochemistry, pharmacology, toxicology, microbiology, cell biology, chemistry, and plant physiology who are based academic, industrial and government laboratories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信